Home
Class 11
MATHS
The expression [(1+sin(pi/8)+icos(pi/8))...

The expression `[(1+sin(pi/8)+icos(pi/8))/(1+sin(pi/8)-icos(pi/8))]^8` is equal is

Promotional Banner

Similar Questions

Explore conceptually related problems

[(1+sin(pi//8)+icos(pi//8))/(1+sin(pi//8)-icospi//8)]^(-8//3)

((sin (pi/8)+i cos (pi/8))/(sin (pi/8)-i cos (pi/8)))^(8)=

The expression [(1+sin((pi)/(8))+i cos((pi)/(8)))/(1+sin((pi)/(8))-i cos((pi)/(8)))]^(8)

icos(pi/6)+sin(pi/6)=?

The value of [(1+cos(pi/8)+isin(pi/8))/(1+cos(pi/8)-isin(pi/8))]^8 is

The smallest positive integral value of ' n ' such that [(1+sin (pi)/(8)+i cos (pi)/(8))(1+sin (pi)/(8)-i cos (pi)/(8))]^(n) is purely imaginary is

The smallest positive integral value of n such that [(1+"sin"pi/8+i"cos"(pi)/8)/(1+"sin"(pi)/8-i"cos"(pi)/8)]^(n) is purely imaginary is n=

(1+cos.(pi)/(8))(1+cos.(3pi)/(8))(1+cos.(5pi)/(8))(1+cos.(7pi)/(8)) is equal to

(1+cos.(pi)/(8))(1+cos.(3pi)/(8))(1+cos.(5pi)/(8))(1+cos.(7pi)/(8)) is equal to

Prove that ((1+sin.(pi)/(8)+icos.(pi)/(8))/(1+sin.(pi)/(8)-icos.(pi)/(8)))^(8)=-1