Home
Class 12
MATHS
If y=log[x+sqrt(x^2+a^2)\ ] , show that ...

If `y=log[x+sqrt(x^2+a^2)\ ]` , show that (`(x^2+a^2)(d^2\ y)/(dx^2)+x(dy)/(dx)=0`

Promotional Banner

Similar Questions

Explore conceptually related problems

Find the second order derivative of the following functions If y = log[x + sqrt(x^2 + a^2)] , show that (x^2 + a^2) (d^2y)/(dx^2) + x (dy)/(dx) = 0

If y=log{x+ sqrt( x^2+a^2 )} , prove that: (x^2+a^2)(d^2y)/(dx^2)+x(dy)/(dx)=0 .

If y= log(x+ sqrt ( x^2 + a^2 ) ), show that ( x^2 + a^2 )( d^2 y)/(d x^2 ) + x(dy/dx) = 0

If y={log(x+sqrt(x^2+1))}^2 , show that (1+x^2)(d^2y)/(dx^2)+x(dy)/(dx)=2 .

If y=log(x+sqrt(1+x^(2))), then show that (1+x^(2))(d^(2)y)/(dx^(2))+x(dy)/(dx)=0

If y=log\ [x+sqrt(x^2+1)] , prove that (x^2+1)(d^2\ y)/(dx^2)+x(dy)/(dx)=0

If y=log\ [x+sqrt(x^2+1)] , prove that (x^2+1)(d^2\ y)/(dx^2)+x(dy)/(dx)=0

If y={log(x+sqrt(x^(2)+1))}^(2), show that (1+x^(2))(d^(2)y)/(dx^(2))+x(dy)/(dx)=2

If y={log(x+sqrt(x^(2)+1))}^(2), show that (1+x^(2))(d^(2)y)/(dx^(2))+x(dy)/(dx)=2

If y=log[x+sqrt(x^(2)+1)], prove that (x^(2)+1)(d^(2)y)/(dx^(2))+x(dy)/(dx)=0