Home
Class 11
MATHS
The sum of the series: 1/((log)2 4)+1/((...

The sum of the series: `1/((log)_2 4)+1/((log)_4 4)+1/((log)_8 4)++1/((log)_(2n)4)` is `(n(n+1))/2` (b) `(n(n+1)(2n+1))/(12)` (c) `(n(n+1))/4` (d) none of these

Promotional Banner

Similar Questions

Explore conceptually related problems

the sum of the series (1)/(log_(2)4)+(1)/(log_(4)4)+(1)/(log_(8)4)+.........+(1)/(log_(2)^(n)4)

((log)_(2)3)(log)_(3)4(log)_(4)5(log)_(n)(n+1)=10 Find n=?

1/(log_2 a)+1/(log_4 a)+1/(log_8 a)+... up to n terms = (n(n+1))/k then k=

Show that: 1/(log_2n)+1/(log_3n)+1/(log_4n)+…+1/(log_43n)=1/(log_(43!)n)

If n >1 ,then prove that 1/((log)_2n)+1/((log)_3n)+.......+1/((log)_(53)n)=1/((log)_(53 !)n)dot

Prove that: 1/(log_2N)+1/(log_3N)+1/(log_4N)+…+1/(log_(2011)N)=1/(log_(2011!)N)

If n >1,t h e np rov et h a t 1/((log)_2n)+1/((log)_3n)++1/((log)_(53)n)=1/((log)_(53 !)n)dot