Home
Class 12
MATHS
If a(y+z)=b(z+x)=c(x+y) then show that (...

If `a(y+z)=b(z+x)=c(x+y)` then show that `(a-b)/(x^(2)-y^(2))=(b-c)/(y^(2)-z^(2))=(c-a)/(z^(2)-x^(2))]`

Promotional Banner

Similar Questions

Explore conceptually related problems

If a/(y+z) = b/(z + x) = c/(x+y) , then prove that (a(b-c))/(y^(2)-z^(2)) = (b(c-a))/(z^(2)-x^(2)) = (c(a-b))/(x^(2)-y^(2)) .

a(y+z)=x,b(z+x)=y,c(x+y)=z prove that (x^(2))/(a(1-bc))=(y^(2))/(b(1-ca))=(z^(2))/(c(1-ab))

If (a)/(y+z-x)=(b)/(z+x-y)=©/(x+y-z) then show that (x)/(b+c)=(y)/(c+a)=(z)/(a+b)

If a^(x)=b^(y)=c^(z) and b^(2)=ac, then show that y=(2zx)/(z+x)

If (y+z)/(a)=(z+x)/(b)=(x+y)/c then show that (x)/(b+c-a)=(y)/(c+a-b)=(z)/(a+b-c)

If (y+z)/(a)=(z+x)/(b)=(x+y)/© then show that (x)/(b+c-a)=(y)/(c+a-b)=(z)/(a+b-c)

If a^x=b^y=c^z and b^2=a c , then show that y=(2z x)/(z+x)

If |(a,y,z),(x,b,z),(x,y,c)|=0 , then prove that (a)/(a-x)+(b)/(b-y)+(c)/(c-z)=2

If (x^2-yz)/a=(y^2-zx)/b=(z^2-xy)/c , show that (a+b+c)(x+y+z)=(ax+by+cz).