Home
Class 11
MATHS
If a/(sinA)=K , then the area of "DeltaA...

If `a/(sinA)=K ,` then the area of `"DeltaA B C"` in terms of `K` and sines of the angles is `(K^2)/4s in A\ s in B\ s in C` (b) `(K^2)/2s in A\ s in B\ s in C` `2K^2s in A\ s in B\ "sin"(A+B)` (d) none

Promotional Banner

Similar Questions

Explore conceptually related problems

If a/(sinA)=K , then the area of "Triangle ABC" in terms of K and sines of the angles is (K^2)/4sin A sin B sin C (b) (K^2)/2sin A sin B sin C 2K^2sin A sin B "sin"(A+B) (d) none

In a A B C , S/R is equal to s in A+s in B+s in C (b) 4cosA/2cosB/2cosC/2 4s in A\ s in B\ s in C (d) ( s)/(a b c)

For any "Delta"A B C the value of determinant |sin^2\ \ A cot A1sin^2B cot B1sin^2\ \ C cot C1| is equal to- s in A s in B s in C b. 1 c. 0 d. s in A+s in B+s in C

For any "Delta"A B C the value of determinant |sin^2\ \ A cot A1sin^2B cot B1sin^2\ \ C cot C1| is equal to- s in A s in B s in C b. 1 c. 0 d. s in A+s in B+s in C

If A is the area and 2s is the sum of the sides of a triangle,then A<=(s^(2))/(4) (b) A<=(s^(2))/(3sqrt(3))2R sin A sin B sin C( d) none of these

If A + B + C = 2s, then prove that sin (s - A) sin (s - B) + sin s. sin (s - C) = sin A sin B .

If A + B + C = 2S, prove that sin (S- A) sin (S - B) +sin S sin (S-C) = sin A sin B

If A+B+C= 2S , " then " sin (S-A) sin(S-B) + sinS sin(S-C)=

If c^(2) = a^(2) + b^(2) then write the value of 4s ( s- a) (s-b) (s-c) in terms of a,b.