Definite and Indefinite Integration
1.0Introduction to Integration
Integration is the inverse process of differentiation.
If: dxdy=f(x), then: y=∫f(x)dx
Integration is classified into two types:
- Indefinite Integration → Represents a family of functions (with constant of integration).
- Definite Integration → Represents a numerical value, usually area under a curve within limits.
2.0Indefinite Integration
Definition
The indefinite integral of a function f(x) is written as: ∫f(x)dx=F(x)+C
where:
- F′(x)=f(x)
- C = constant of integration
Properties of Indefinite Integration
- Linearity: ∫[af(x)+bg(x)],dx=a∫f(x),dx+b∫g(x),dx
- Reversal of Differentiation: dxd(∫f(x),dx)=f(x)
- Constant Factor Rule: ∫a⋅f(x),dx=a∫f(x),dx
Standard Formulas
- ∫xndx=n+1xn+1+C(n=−1)
- ∫x1dx=ln∣x∣+C
- ∫exdx=ex+C
- ∫axdx=lnaax+C
- ∫sinxdx=−cosx+C
- ∫cosxdx=sinx+C
- ∫sec2xdx=tanx+C
- ∫csc2xdx=−cotx+C
- ∫secxtanxdx=secx+C
- ∫cscxcotxdx=−cscx+C
Rules of Integration
- Linearity: ∫[af(x)+bg(x)]dx=a∫f(x)dx+b∫g(x)dx
- Substitution Rule: If x=ϕ(t), then: ∫f(x)dx=∫f(ϕ(t))ϕ′(t)dt
- Integration by Parts:∫uvdx=u∫vdx−∫(dxdu∫vdx)dx
- Partial Fractions: Used when integrand is a rational function.
Methods of Indefinite Integration
Substitution Method
If ( f(x) ) is complex, substitute ( x ) with another variable ( t ) to simplify the integral.
Example:
∫2xcos(x2),dx
Let (t=x2⇒dt=2xdx)
∫cost,dt=sint+C=sin(x2)+C
Integration by Parts
Used when integrating the product of two functions: [ ∫u,dv=uv−∫v,du ] Choose ( u ) and ( dv ) wisely (using ILATE rule: Inverse, Log, Algebraic, Trig, Exponential).
Partial Fractions
Decompose rational functions into simpler fractions before integrating.
Example: ∫x2−11,dx=∫(2(x−1)1−2(x+1)1)dx
Solved Examples on Indefinite Integration
Example 1: ∫(3x2+2x+1)dx=x3+x2+x+C
Example 2: ∫x2+11dx=tan−1x+C
Example 3 (By Parts):∫xexdx=xex−∫exdx=(x−1)ex+C
Explore in Detail: Indefinite Integration
3.0Definite Integration
Definition of Definite Integration
The definite integral of f(x) between a and b is defined as: ∫abf(x)dx=F(b)−F(a), where F(x) is the antiderivative of f(x).
Properties of Definite Integrals
- Additivity over Intervals: ∫abf(x),dx+∫bcf(x),dx=∫acf(x),dx
- Reversal of Limits: ∫abf(x),dx=−∫baf(x),dx
- Zero Interval: ∫aaf(x),dx=0
- Linearity: ∫ab[af(x)+bg(x)],dx=a∫abf(x),dx+b∫abg(x),dx
- Symmetry: For even and odd functions over ([-a, a]):
- Even: (∫−aaf(x),dx=2∫0af(x),dx)
- Odd: (∫−aaf(x),dx=0)
Evaluation Techniques
- Direct Substitution: Find the antiderivative, then substitute the limits.
- Change of Variable: If substitution is used, adjust the limits accordingly.
- Splitting the Integral: Break into simpler intervals if necessary.
Application of Definite Integrals
- Area under Curves: The area between the curve ( y = f(x) ), the ( x )-axis, and vertical lines ( x = a ) and ( x = b ) is: A=∫abf(x),dx
- Area between Curves: For two curves ( y = f(x) ) and ( y = g(x) ), where (f(x)≥g(x)) in ( [a, b] ): A=∫ab[f(x)−g(x)],dx
- Other Applications
- Physics: Calculation of displacement, work done, etc.
- Probability: Continuous probability distributions.
- Average Value: Average value of f(x) over [a,b]=b−a1∫abf(x),dx
Solved Examples on Definite Integrals
Example 1: ∫01x2dx=[3x3]01=31
Example 2 (Even Function): ∫−22x2dx=2∫02x2dx=2[3x3]02=316
Example 3 (Substitution): ∫0π/2sinxdx=[−cosx]0π/2=1
Example 4 (Property): ∫01ln(x1)dx=∫01ln(1−x1)dx
Learn in detail : Definite Integration
4.0Difference Between Definite and Indefinite Integration