Indefinite Integration → Represents a family of functions (with constant of integration).
Definite Integration → Represents a numerical value, usually area under a curve within limits.
2.0Indefinite Integration
Definition
The indefinite integral of a function f(x) is written as: ∫f(x)dx=F(x)+C
where:
F′(x)=f(x)
C = constant of integration
Properties of Indefinite Integration
Linearity:∫[af(x)+bg(x)],dx=a∫f(x),dx+b∫g(x),dx
Reversal of Differentiation:dxd(∫f(x),dx)=f(x)
Constant Factor Rule:∫a⋅f(x),dx=a∫f(x),dx
Standard Formulas
∫xndx=n+1xn+1+C(n=−1)
∫x1dx=ln∣x∣+C
∫exdx=ex+C
∫axdx=lnaax+C
∫sinxdx=−cosx+C
∫cosxdx=sinx+C
∫sec2xdx=tanx+C
∫csc2xdx=−cotx+C
∫secxtanxdx=secx+C
∫cscxcotxdx=−cscx+C
Rules of Integration
Linearity: ∫[af(x)+bg(x)]dx=a∫f(x)dx+b∫g(x)dx
Substitution Rule: If x=ϕ(t), then: ∫f(x)dx=∫f(ϕ(t))ϕ′(t)dt
Integration by Parts:∫uvdx=u∫vdx−∫(dxdu∫vdx)dx
Partial Fractions: Used when integrand is a rational function.
Methods of Indefinite Integration
Substitution Method
If ( f(x) ) is complex, substitute ( x ) with another variable ( t ) to simplify the integral.
Example:
∫2xcos(x2),dx
Let (t=x2⇒dt=2xdx)
∫cost,dt=sint+C=sin(x2)+C
Integration by Parts
Used when integrating the product of two functions: [ ∫u,dv=uv−∫v,du ] Choose ( u ) and ( dv ) wisely (using ILATE rule: Inverse, Log, Algebraic, Trig, Exponential).
Partial Fractions
Decompose rational functions into simpler fractions before integrating.