• NEET
      • Class 11th
      • Class 12th
      • Class 12th Plus
    • JEE
      • Class 11th
      • Class 12th
      • Class 12th Plus
    • Class 6-10
      • Class 6th
      • Class 7th
      • Class 8th
      • Class 9th
      • Class 10th
    • View All Options
      • Online Courses
      • Distance Learning
      • Hindi Medium Courses
      • International Olympiad
    • NEET
      • Class 11th
      • Class 12th
      • Class 12th Plus
    • JEE (Main+Advanced)
      • Class 11th
      • Class 12th
      • Class 12th Plus
    • JEE Main
      • Class 11th
      • Class 12th
      • Class 12th Plus
  • Classroom
    • NEET
      • 2025
      • 2024
      • 2023
      • 2022
    • JEE
      • 2025
      • 2024
      • 2023
      • 2022
    • Class 6-10
    • JEE Main
      • Previous Year Papers
      • Sample Papers
      • Result
      • Analysis
      • Syllabus
      • Exam Date
    • JEE Advanced
      • Previous Year Papers
      • Sample Papers
      • Mock Test
      • Result
      • Analysis
      • Syllabus
      • Exam Date
    • NEET
      • Previous Year Papers
      • Sample Papers
      • Mock Test
      • Result
      • Analysis
      • Syllabus
      • Exam Date
      • College Predictor
      • Counselling
    • NCERT Solutions
      • Class 6
      • Class 7
      • Class 8
      • Class 9
      • Class 10
      • Class 11
      • Class 12
    • CBSE
      • Notes
      • Sample Papers
      • Question Papers
    • Olympiad
      • NSO
      • IMO
      • NMTC
  • NEW
    • TALLENTEX
    • AOSAT
  • ALLEN E-Store
    • ALLEN for Schools
    • About ALLEN
    • Blogs
    • News
    • Careers
    • Request a call back
    • Book home demo
Home
JEE Maths
Inverse Functions

Inverse Functions 

Inverse functions are an essential concept in mathematics, especially when dealing with functions and their compositions. Whether you're a student preparing for exams or a math enthusiast looking to deepen your understanding, this blog will guide you through the basics and advanced aspects of inverse functions, including their connection to composite functions, differentiation, and logarithms.

1.0What are Inverse Functions?

In simple terms, an inverse function "reverses" the effect of the original function. If a function f maps an input x to an output y, then the inverse function, denoted as f−1 , will map y back to x. Mathematically, if f(x) = y, then f−1(y)=x .

The concept of inverse functions is central to solving equations where you need to "undo" a process or operation, which is often seen in algebra and calculus.

2.0Composing Inverse Functions

When working with functions, it's common to encounter compositions of functions. Composing inverse functions refers to the process where a function and its inverse are applied together. In mathematical terms, if you have a function f and its inverse f−1 , then:

f(f−1(x))=x and f−1(f(x))=x

This property is crucial because it shows that applying a function and its inverse in sequence will return you to the original input.

3.0Composite and Inverse Functions

Composite functions are formed when one function is applied to the result of another. For example, if you have two functions f(x) and g(x), the composite function (f∘g)(x) is defined as f(g(x)).

When dealing with inverse functions, the composition of a function and its inverse simplifies back to the identity function. This means that the composition of a function and its inverse doesn't alter the input value, reinforcing the idea of "undoing" a process. The identity property of inverse functions can be stated as:

f−1(f(x))=x and f(f−1(x))=x

This identity is key when solving for unknown variables in equations involving inverse functions.

4.0Differentiating Inverse Functions

Differentiating inverse functions is another important topic in calculus. The derivative of an inverse function can be computed using a simple formula:

dxd​f−1(x)=f′(f−1(x))1​

This formula states that the derivative of the inverse function is the reciprocal of the derivative of the original function, evaluated at the point where f−1(x) is.

For example, if you have f(x)=x3 , then f−1(x)=3x​ . To differentiate f−1(x) , you would use the formula above to find: 

dxd​3x​=3x2/31​

Differentiating inverse functions is useful in understanding the behavior of functions and their rates of change.

5.0Inverse Functions and Logarithms

One of the most important connections of inverse functions is with logarithms. The natural logarithm ln(x) is the inverse of the exponential function ex, and similarly, logarithms with different bases have inverse relationships with exponential functions. For example:

logb​(x)=y implies by=x

Understanding inverse functions helps in working with logarithmic and exponential equations. It also simplifies solving problems related to exponential growth, decay, and other real-world applications.

6.0Solved Examples

  1. What are inverse functions?

Ans: Inverse functions are functions that "reverse" the effect of the original function. If f(x) is a function, its inverse f−1(x) satisfies f(f−1(x))=x

and f−1(f(x))=x.

  1. What is the relationship between a function and its inverse?

Ans: A function and its inverse undo each other. If f(x) maps a to b, then f−1(b) maps b back to a.

  1. How do composite functions relate to inverse functions?

Ans: Composing a function with its inverse yields the identity function, i.e., and . f(f−1(x))=x and f−1(f(x))=x.

  1. Can inverse functions be differentiated?

Ans: Yes, the derivative of an inverse function can be found using the formula: dxd​f−1(x)=f′(f−1(x))1​ , where f'(x) is the derivative of the original function.

  1. How do you check if two functions are inverses?

Ans: To check if two functions are inverses, compose them in both orders: and f(f−1(x))=x and f−1(f(x))=x. If both hold true, the functions are inverses.

  1. What is the role of inverse functions in logarithms?

Ans: Logarithms are the inverse functions of exponentials. For example, the logarithmic function logb​(x) is the inverse of the exponential function bx.

Table of Contents


  • 1.0What are Inverse Functions?
  • 2.0Composing Inverse Functions
  • 3.0Composite and Inverse Functions
  • 4.0Differentiating Inverse Functions
  • 5.0Inverse Functions and Logarithms
  • 6.0Solved Examples

Frequently Asked Questions

To find the inverse of a function, swap the roles of x and y in the original equation and solve for y to get the inverse function.

No, only one-to-one (injective) functions have inverses. A function must pass the horizontal line test to be invertible.

Inverse functions are used in solving equations, modeling real-world situations (like growth and decay), and simplifying complex problems in calculus, physics, and engineering.

Join ALLEN!

(Session 2025 - 26)


Choose class
Choose your goal
Preferred Mode
Choose State
  • About
    • About us
    • Blog
    • News
    • MyExam EduBlogs
    • Privacy policy
    • Public notice
    • Careers
    • Dhoni Inspires NEET Aspirants
    • Dhoni Inspires JEE Aspirants
  • Help & Support
    • Refund policy
    • Transfer policy
    • Terms & Conditions
    • Contact us
  • Popular goals
    • NEET Coaching
    • JEE Coaching
    • 6th to 10th
  • Courses
    • Online Courses
    • Distance Learning
    • Online Test Series
    • International Olympiads Online Course
    • NEET Test Series
    • JEE Test Series
    • JEE Main Test Series
  • Centers
    • Kota
    • Bangalore
    • Indore
    • Delhi
    • More centres
  • Exam information
    • JEE Main
    • JEE Advanced
    • NEET UG
    • CBSE
    • NCERT Solutions
    • Olympiad
    • NEET 2025 Results
    • NEET 2025 Answer Key
    • NEET College Predictor
    • NEET 2025 Counselling

ALLEN Career Institute Pvt. Ltd. © All Rights Reserved.

ISO