Initial Kinetic Energy
`=(1)/(2)m_1 v_1^2 +(1)/(2)m_2 v_2^2 + (1)/(2)MV^2`
`=(1)/(2) 0.08xx10^2 +(1)/(2) 0.08xx6^2 _ 0 = 5.44 J …(i)`
Applying law of conservation of linear momentum during
collision
`m_1 xx v_1 + m_2xxv_2 = (M + m_1 +m_2) V_c`
where `v_c` is the velocity on it after collision
`0.08xx10+0.08xx6 = (0.16 + 0.08 + 0.08)v_c`
`rArr V_c = 4m/s`
`:.` Translational kinetic energy after collision
`=(1)/(2)(M + m_1+m_2)V_c^2 = 2.56J ...(ii)`
Applying conservation of angular momentum of the bar
and two particle system about the centre of the bar.
Since extrnal torque is zero, the inital angular momentum
is equal to final angular momentum.
Initial angular momentum
`=m_1v_1xx x - m_2 v_2x`
`=0.08xx10x0.5 - 0.08xx6xx0.5`
`=0.4 - 0.24 = 0.16kgm^2s^(-1)` (in clockwise direction)`
Final angular momentum `= I omega`
`=[(Ml^2)/(12) + m_1x^2+m_2x^2]omega`
`=[((0.16)(sqrt3)^2/(12 + 0.08xx(0.5)^2 + (0.08)(0.5)^2]omega`
`=0.08 omega`
`:. 0.08 omega = 0.16 rArr omega =2rad/s ...(iii)`
The rotational kinetic energy
=Translational K.E. + Rotational K.E.
= 2.56+0.16 = 2.72 J
The change in K.E. = Initial K.E.- Final K.E.
=5.44 - 2.72 = 2.72J