The line `(x+1)/(-10)=(y+3)/(-1)=(z-4)/1 and (x+10)/(-1)=(y+1)/(-3) =(z-1)/(4)` interest at the point.
A
(11,-4,5)
B
(-11,-4,5)
C
(11,4,-5)
D
(-11,-4,-5)
Text Solution
Verified by Experts
The correct Answer is:
B
Let `(x+1)/(-10)=(y+3)/(-1)=(z-4)/(1)=lambda_(1)` `and (x+10)/(-1)=(y+1)/(-3)=(z-1)/(4)=lambda_(2)` `"Then", (-10lambda_(1)-1-lambda_(2)-3,lambda_(1)+4)` and `(-lambda_(2)-10,-3lambda_1-1, 4lambda_(2)+1)` are identical. `-10lambda_(1)-1=-lambda_(2)-10,-lambda,-3=-3lambda_2-1` and `lambda_(1)+4=4lambda_(2)+1` `Rightarrow -10lambda_(1)+lambda_(2)=-9-lambda_(1)+3lambda_(2)=2` `lambda_(1)-4lamda2=-3` On solving, we get `lambda_(1)=lambda_(2)=1` Intersection points is `(-10xx1-1, -1-3,1+4)i.e, (-11,-4,5)` On solving, we get `x=-11, y=-4 and z=5`.
Topper's Solved these Questions
LINE
MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise Exercise 2(Miscellaneous Problems)|30 Videos
INTEGRATION
MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|30 Videos
Linear Programming
MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|13 Videos
Similar Questions
Explore conceptually related problems
The lines (x-2)/(1)=(y-3)/(2)=(z-4)/(3)and(x-1)/(-5)=(y-2)/(1)=(z-1)/(1) are
Show that the lines ( x+1)/(-10) = ( y + 3)/(-1) = ( z - 4) / (1) "and" (x + 10)/(-1) = ( y+1)/(-3) = (z -1)/(4) intersect each other and find the coordinates of the points of intersection .
If the lines (x-1)/(1)=(y-3)/(1)=(z-2)/(lambda) and (x-1)/(lambda)=(y-3)/(2)=(z-4)/(1) intersect at a point, then the value of lambda^(2)+4 is equal to
If the lines (x-2)/(1)=(y-3)/(1)=(z-4)/(lamda) and (x-1)/(lamda)=(y-4)/(2)=(z-5)/(1) intersect then
The lines (x)/(1)=(y)/(2)=(z)/(3)and(x-1)/(-2)=(y-2)/(-4)=(z-3)/(-6) are
Show that the lines (x-4)/(1) = (y+3)/(-4) = (z+1)/(7) and (x-1)/(2) = (y+1)/(-3) = (z+10)/(8) intersect. Also find the co-ordinates of their point of intersection.
The lines (x-2)/(1)=(y-3)/(1)=(z-4)/(-k) and (x-1)/(k)=(y-4)/(2)=(z-5)/(1) are coplanar, if
The lines (x-1)/(1)=(y-1)/(2)=(z-1)/(3) and (x-4)/(2)=(y-6)/(3)=(z-7)/(3) are coplanar. Their point of intersection is
Do the lines (x+3)/(-4)=(y-4)/1=(z+1)/7 and (x+1)/(-3)=(y-1)/2=(z+10)/8 intersect? If so find the point of intersection.
The lines (x-1)/1=(y-2)/2=(z-3)/(3) and (x-1)/1=y/3 =z/4 are
MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS-LINE-MHT CET Corner