Home
Class 12
MATHS
Derivative of tan^(3)theta with respect ...

Derivative of `tan^(3)theta` with respect to `sec^(3)theta` at `theta=(pi)/(3)` is

A

`(3)/(2)`

B

`(sqrt(3))/(2)`

C

`(1)/(2)`

D

`-(sqrt(3))/(2)`

Text Solution

Verified by Experts

Given `y = tan ^(3) theta, x sec^(3) theta`
Differentiate both x and y w.r.t. `theta`
`(dy)/(d theta)= 3 tan^(2) theta sec^(2) theta`.
`(dx)/(d theta)= 3 sec^(2) theta xx sec theta tan theta`
`(dy)/(dx)=(dy)/(d theta)xx(d theta)/(d)`
`=(3 tan^(2) theta xx sec^(2) theta)/( 3 sec^(2) theta xx sec theta tan theta)`
`=(tan theta)/(sec theta)=( sin theta)/(cos theta)xxcos theta `
`sin theta`
At `theta =(pi)/(3)`
`(dy)/(dx)= sin ((pi)/(3))= (sqrt(3))/(2)`
Hence, correct answer from the given alternatives is (b).
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • MARCH 2017

    GURUKUL PUBLICATION - MAHARASHTRA PREVIOUS YEAR PAPERS|Exercise SECTION-II|20 Videos
  • MARCH 2016

    GURUKUL PUBLICATION - MAHARASHTRA PREVIOUS YEAR PAPERS|Exercise SECTION II|20 Videos
  • MARCH 2018

    GURUKUL PUBLICATION - MAHARASHTRA PREVIOUS YEAR PAPERS|Exercise SECTION - II|20 Videos

Similar Questions

Explore conceptually related problems

If x=a sec^(3)theta and y=a tan^(3)theta, find (dy)/(dx) at theta=(pi)/(3)

If x=a sec^(3)theta and y=a tan^(3)theta, find (dy)/(dx) at theta=(pi)/(3)

Knowledge Check

  • Derivative of log (sec theta + tan theta ) with respect to sec theta at theta =(pi)/(4) is

    A
    0
    B
    1
    C
    `(1)/(sqrt(2))`
    D
    `sqrt(2)`
  • Derivative of log (sec theta + tan theta ) with respect to sec theta at theta = (pi)/(4) is

    A
    0
    B
    1
    C
    `(1)/(sqrt(2))`
    D
    `sqrt(2)`
  • If x= sec ^(2) theta, y =tan ^(3) theta ,then " at " theta (pi)/(3) , (dy)/(dx) =

    A
    ` (-3sqrt(3))/( 2) `
    B
    ` (3sqrt(3))/( 2) `
    C
    ` (-1)/( 2sqrt(3))`
    D
    ` (1)/( 2sqrt(3))`
  • Similar Questions

    Explore conceptually related problems

    If x=a sec^(3)theta and y=a tan^(3)theta, find (dy)/(dx) at theta=(pi)/(3)

    If tan theta+sec theta=(2)/(3) then sec theta

    sec^(6)theta=tan^(6)theta+3tan^(2)theta sec^(2)theta+1

    sec^(6)theta=tan^(6)theta+3tan^(2)theta sec^(2)theta+1

    If sec^(2)theta+tan^(2)theta=sqrt(3) , then the value of (sec^(4)theta-tan^(4)theta) is