Home
Class 12
MATHS
int(a)^(b)f(x)dx=int(a)^(b)f(a+b-x)dx. H...

`int_(a)^(b)f(x)dx=int_(a)^(b)f(a+b-x)dx.` Hence evaluate : `int_(a)^(b)(f(x))/(f(x)+f(a+b-x))dx.`

Text Solution

Verified by Experts

`intf(x)dx=int_(a)^(b)f(a+b-x)Dx`
Since we know that the following properties,
`int_(a)^(b)f(x)dx=-int_(b)^(a)f(x)dx" …(i)"`
and `" "int_(a)^(b)f(x)=int_(a)^(b)f(t)dt" …(ii)"`
Consider, `int_(a)^(b)f(x)dx`
Putting `x=a+b - t." "(because t = a+b-x)`
`rArr" "dx=-dt`
When `x=a,` then `t=a+b-a=b`
When `x=b`, then `t=a+b-b=a`
`therefore int_(a)^(b)f(x)dx=int_(b)^(a)f(a+b-t)(-dt)`
`=-int_(b)^(a)f(a+h-t)dt`
`=int_(a)^(b)f(a+b-t)dt" [By equation (i)]"`
`=int_(a)^(b)f(a+b-t)dx" [By equation (ii)]"`
And now,
`int_(a)^(b)(f(x))/(f(x)+f(a+b-x))dx`
`"Let I"=int_(a)^(b)(f(x))/(f(x)+f(a+b-x))dx" ...(iii)"`
And`" I"=int_(a)^(b)(f(a+b-x))/(f(a+b-x)+f(x))" ...(iv)"`
Adding equations (i) and (ii), we get
`2I=int_(a)^(b)(f(x)+f(a+b-x))/(f(x)+f(a+b-x))dx`
`=int_(a)^(b)1.dx`
`=[x]_(a)^(b)`
`therefore" "2I=b-a`
`therefore" "I=(b-a)/(2)`
`therefore" "=int_(a)^(b)(f(x))/(f(x)+f(A+b-x))dx`
`=(b-a)/(2)`
Promotional Banner

Topper's Solved these Questions

  • OCTOBER 2014

    GURUKUL PUBLICATION - MAHARASHTRA PREVIOUS YEAR PAPERS|Exercise SECTION - II|19 Videos
  • MARCH 2019

    GURUKUL PUBLICATION - MAHARASHTRA PREVIOUS YEAR PAPERS|Exercise SECTION-D|13 Videos
  • OCTOBER 2015

    GURUKUL PUBLICATION - MAHARASHTRA PREVIOUS YEAR PAPERS|Exercise SECTION -II|20 Videos

Similar Questions

Explore conceptually related problems

If int_(a)^(b)(f(x))/(f(x)+f(a+b-x))dx=10 , then

int_(a)^(b)f(x)dx=phi(b)-phi(a)

int_(a + c)^(b+c) f(x)dx=

Prove that int_(a)^(b)(f(x))/(f(x)+f(a+b-x)) dx=(b-a)/(2) .

Let f(x) and g(x) be any two continuous function in the interval [0, b] and 'a' be any point between 0 and b. Which satisfy the following conditions : f(x)=f(a-x), g(x)+g(a-x)=3, f(a+b-x)=f(x) . Also int_(0)^(a)f(x)dx=int_(0)^(a)f(a-x)dx, int_(a)^(b)f(x)dx=int_(a)^(b)f(x)dx=int_(a)^(b)f(a+b-x)dx int_(0)^(a)f(x)dx=p" then " int_(0)^(a)f(x)g(x)dx is

Let f(x) and g(x) be any two continuous function in the interval [0, b] and 'a' be any point between 0 and b. Which satisfy the following conditions : f(x)=f(a-x), g(x)+g(a-x)=3, f(a+b-x)=f(x) . Also int_(0)^(a)f(x)dx=int_(0)^(a)f(a-x)dx, int_(a)^(b)f(x)dx=int_(a)^(b)f(x)dx=int_(a)^(b)f(a+b-x)dx If f(a+b-x)=f(x) , then int_(a)^(b)xf(x)dx is

Let f(x) and g(x) be any two continuous function in the interval [0, b] and 'a' be any point between 0 and b. Which satisfy the following conditions : f(x)=f(a-x), g(x)+g(a-x)=3, f(a+b-x)=f(x) . Also int_(0)^(a)f(x)dx=int_(0)^(a)f(a-x)dx, int_(a)^(b)f(x)dx=int_(a)^(b)f(x)dx=int_(a)^(b)f(a+b-x)dx If int_(0)^(a//2)f(x)dx=p," then "int_(0)^(a)f(x)dx is equal to

Which of the following is incorrect? int_(a+c)^(b+c)f(x)dx=int_(a)^(b)f(x+c)dxint_(a+c)^(bc)f(x)dx=c int_(a)^(b)f(cx)dxint_(-ac)^(a)f(x)dx=(1)/(2)int_(-a)^(a)(f(x)+f(-x)dx None of these

Prove that int_(0)^(a) f(x) dx= int_(0)^(a) f(a-x)dx . Hence find int_(0)^((pi)/(2)) sin^(2) xdx

If |int_(a)^(b)f(x)dx|=int_(a)^(b)|f(x)|dx,a

GURUKUL PUBLICATION - MAHARASHTRA PREVIOUS YEAR PAPERS- OCTOBER 2014-SECTION - II
  1. If X is the a random variable with probability mass function P(x) =...

    Text Solution

    |

  2. If sec((x+y)/(x-y))=a^(2),"then "(d^(2)y)/(dx^(2))=......

    Text Solution

    |

  3. If y=sin^(-1)(3x)+sec^(-1)((1)/(3x)), find (dy)/(dx).

    Text Solution

    |

  4. Evaluate : intx log x dx

    Text Solution

    |

  5. if int0^k (dx)/(2+8x^2)=pi/16 then find the value of k

    Text Solution

    |

  6. The probability that a certain kind of component will survive a check ...

    Text Solution

    |

  7. Find the area of the region bounded by the curve y = sinx , ...

    Text Solution

    |

  8. Examine the continuity of the following function at given point : f(...

    Text Solution

    |

  9. If x=phi(t) is a differentiable function of 't', then prove that int...

    Text Solution

    |

  10. 3e^(x) tan y dx + (1+e^(x)) sec^(2) dy =0 , " when" x = 0 and y = pi

    Text Solution

    |

  11. A point source of light is hung 30 feet directly above a straight hori...

    Text Solution

    |

  12. Evaluate the following integrals: int(logx)/((1+logx)^(2))dx

    Text Solution

    |

  13. If x=f(t), y=g(t) are differentiable functions of parameter 't' then p...

    Text Solution

    |

  14. Show that the function defined by f(x) = | cos x |is a continuous fun...

    Text Solution

    |

  15. Solve the differential equation (dy)/(dx)=(y+sqrt(x^(2)+y^(2)))/(x).

    Text Solution

    |

  16. Given X ~ B(n,p) If n= 20,, E(x)= 10 , Find p, Car(X) and S.D (X)

    Text Solution

    |

  17. A bakerman sells 5 types of cakes. Profit due to the sale of each type...

    Text Solution

    |

  18. Varify Lagrange's mean value theorem for the function f(x)=x+(1)/(x)...

    Text Solution

    |

  19. int(a)^(b)f(x)dx=int(a)^(b)f(a+b-x)dx. Hence evaluate : int(a)^(b)(f(x...

    Text Solution

    |