Home
Class 12
MATHS
If y=sec^(-1)((sqrt(x-1))/(x+sqrt(x)))+...

If `y=sec^(-1)((sqrt(x-1))/(x+sqrt(x)))+sin^(-1)((x+sqrt(x))/(sqrt(x-1)))`, then `(dy)/(dx)=` ……………

A

x

B

`(1)/(x)`

C

1

D

0

Text Solution

Verified by Experts

The correct Answer is:
C

Given , `y=sec^(-1)((sqrt(x)-1)/(x+sqrt(x)))+sin^(-1)((x+sqrt(x))/(sqrt(x)-1))`
`y=cos^(-1)((x+sqrt(x))/(sqrt(x-1)))+sin^(-1)((x+sqrt(x))/(sqrt(x-1)))`
`y=(pi)/(2)[becausesin^(-1)x+cos^(-1)x=(pi)/(2)]`
`therefore(dy)/(dx)=0`
Hence the correct answer from the given alternative is .
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • OCTOBER 2015

    GURUKUL PUBLICATION - MAHARASHTRA PREVIOUS YEAR PAPERS|Exercise SECTION -II|20 Videos
  • OCTOBER 2014

    GURUKUL PUBLICATION - MAHARASHTRA PREVIOUS YEAR PAPERS|Exercise SECTION - II|19 Videos

Similar Questions

Explore conceptually related problems

If y = sec^(-1)((sqrtx-1)/(x+sqrt(3)))+ sin^(-1)((x+sqrt(3))/(sqrt(x)-1)) then find dy/dx

If y=sqrt(x)+(1)/(sqrt(x)) , then (dy)/(dx)=

Knowledge Check

  • If Y= sec^(-1)"" (sqrt""x+1)/( sqrt""x=1 )) + sin^(-1)"" (sqrt""x-1)/( sqrt""x+1) , then (dy)/(dx)=

    A
    1
    B
    2
    C
    3
    D
    0
  • If y= sqrt(x-1) +sqrt( x+1) ,then (dy)/(dx)

    A
    ` (2y )/( sqrt(x^(2)- 1)) `
    B
    ` (-2y )/( sqrt(x^(2)- 1)) `
    C
    ` (y )/( 2sqrt(x^(2)- 1)) `
    D
    ` (-y )/( 2sqrt(x^(2)- 1)) `
  • If y=sqrt((sqrt(x-1))/(sqrt(x+1)))," then "(dy)/(dx)|_(x=4)=

    A
    `(sqrt(3))/(2)`
    B
    `(2)/(sqrt(3))`
    C
    `(sqrt(36))/(3)`
    D
    `(sqrt(3))/(36)`
  • Similar Questions

    Explore conceptually related problems

    If y=sec^(-1)((sqrt(x)+1)/(sqrt(x)-1))+sin^(-1)((sqrt(x)-1)/(sqrt(x)+1)) then (dy)/(dx) is equal to?

    Find (dy)/(dx) if y=sec^(-1)((sqrt(x)+1)/(sqrt(x)-1))+sin^(-1)((sqrt(x)-1)/(sqrt(x)+1))

    If y=sqrt((a-x)(x-b))-(a-b)tan^(-1)((sqrt(a-x))/(sqrt(x-b))) then (dy)/(dx)=

    If y="cosec"^(-1)sqrt(x+1)/(sqrt(x-1))+"cos"^(-1)sqrt(x-1)/sqrt(x+1) , then dy/dx is equal to

    If y= (sqrt( x) +(1)/(sqrt(x)) ) ^(5) , then (dy)/(dx) =