Home
Class 11
PHYSICS
Given, Avogadro's number N = 6.02 xx 10^...

Given, Avogadro's number `N = 6.02 xx 10^23` and Boltzmann's constant `k = 1.38 xx 10^-23 J//K`.
(a) Calculate the average kinetic energy of translation of the molecules of an ideal gas at `0^@ C and at 100^@ C`.
(b) Also calculate the corresponding energies per mole of the gas.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problem, we will follow these steps: ### Step 1: Understand the formula for average kinetic energy The average kinetic energy (KE) of a molecule in an ideal gas is given by the formula: \[ KE = \frac{3}{2} k T \] where: - \( k \) is Boltzmann's constant (\( 1.38 \times 10^{-23} \, \text{J/K} \)) - \( T \) is the absolute temperature in Kelvin. ### Step 2: Convert temperatures from Celsius to Kelvin - For \( 0^\circ C \): \[ T_1 = 0 + 273 = 273 \, \text{K} \] - For \( 100^\circ C \): \[ T_2 = 100 + 273 = 373 \, \text{K} \] ### Step 3: Calculate average kinetic energy at \( 0^\circ C \) Using the formula: \[ KE_1 = \frac{3}{2} k T_1 \] Substituting the values: \[ KE_1 = \frac{3}{2} \times (1.38 \times 10^{-23} \, \text{J/K}) \times (273 \, \text{K}) \] Calculating: \[ KE_1 = \frac{3}{2} \times 1.38 \times 10^{-23} \times 273 \] \[ KE_1 = 5.65 \times 10^{-21} \, \text{J} \, \text{(per molecule)} \] ### Step 4: Calculate average kinetic energy at \( 100^\circ C \) Using the formula: \[ KE_2 = \frac{3}{2} k T_2 \] Substituting the values: \[ KE_2 = \frac{3}{2} \times (1.38 \times 10^{-23} \, \text{J/K}) \times (373 \, \text{K}) \] Calculating: \[ KE_2 = \frac{3}{2} \times 1.38 \times 10^{-23} \times 373 \] \[ KE_2 = 7.72 \times 10^{-21} \, \text{J} \, \text{(per molecule)} \] ### Step 5: Calculate the corresponding energies per mole of the gas To find the energy per mole, we multiply the kinetic energy per molecule by Avogadro's number (\( N = 6.02 \times 10^{23} \)): - For \( 0^\circ C \): \[ KE_{1, \text{mole}} = KE_1 \times N \] \[ KE_{1, \text{mole}} = (5.65 \times 10^{-21} \, \text{J}) \times (6.02 \times 10^{23}) \] Calculating: \[ KE_{1, \text{mole}} = 3401 \, \text{J/mol} \] - For \( 100^\circ C \): \[ KE_{2, \text{mole}} = KE_2 \times N \] \[ KE_{2, \text{mole}} = (7.72 \times 10^{-21} \, \text{J}) \times (6.02 \times 10^{23}) \] Calculating: \[ KE_{2, \text{mole}} = 4647 \, \text{J/mol} \] ### Final Answers: (a) Average kinetic energy of translation of the molecules: - At \( 0^\circ C \): \( 5.65 \times 10^{-21} \, \text{J} \) - At \( 100^\circ C \): \( 7.72 \times 10^{-21} \, \text{J} \) (b) Corresponding energies per mole of the gas: - At \( 0^\circ C \): \( 3401 \, \text{J/mol} \) - At \( 100^\circ C \): \( 4647 \, \text{J/mol} \)

To solve the given problem, we will follow these steps: ### Step 1: Understand the formula for average kinetic energy The average kinetic energy (KE) of a molecule in an ideal gas is given by the formula: \[ KE = \frac{3}{2} k T \] where: - \( k \) is Boltzmann's constant (\( 1.38 \times 10^{-23} \, \text{J/K} \)) - \( T \) is the absolute temperature in Kelvin. ...
Promotional Banner

Topper's Solved these Questions

  • THERMOMETRY,THERMAL EXPANSION & KINETIC THEORY OF GASES

    DC PANDEY|Exercise Exercise 20.1|5 Videos
  • THERMOMETRY,THERMAL EXPANSION & KINETIC THEORY OF GASES

    DC PANDEY|Exercise Exercise 20.2|7 Videos
  • THERMOMETRY,THERMAL EXPANSION & KINETIC THEORY OF GASES

    DC PANDEY|Exercise Example Type 3|2 Videos
  • THERMOMETRY THERMAL EXPANSION AND KINETIC THEORY OF GASES

    DC PANDEY|Exercise Medical entrance gallary|30 Videos
  • UNIT AND DIMENSIONS

    DC PANDEY|Exercise Assertion And Reason|2 Videos

Similar Questions

Explore conceptually related problems

Calculate the kinetic energy of 2 moles of an ideal gas at 27^(@)C .

The average kinetic energy of one molecule of an ideal gas at 27^@C and 1 atm pressure is [Avogadro number N_A=6.023xx10^(23) ]

Calculate the average kinetic energy of hydrogen molecule at 0^@ C . Given k_(B) = 1.38 xx 10^(-23) JK^(-1) .

Calculate the average kinetic energy of neon molecule at 27^@ C . Given k_(B) = 1.38 xx 10^(-23) JK^(-1) .

Calculate the average kinetic energy of hydrogen molecule at 0^(@)C . Given k_(B)=1.38xx10^(-23)JK^(-1) .

Calculate the average kinetic energy of neon molecule at 27^(@)C . Given k_(B)=1.38xx10^(-23)JK^(-1)

The average kinetic energy of the molecules of a gas at 27^(@) is 9xx10^(-20)J . What is its average K.E. at 227^(@)C ?

The average kinetic energy of a gas molecule at 0^(@)C is 5.621xx10^(-21) J . Calculate Boltzmann costant. Also calculate the number of molecules present in one mole of the gas.

Calculate the average kinetic enrgy of oxygen molecule at 0^(@) C. (R=8.314 J mol^(-1) K^(-1),N_(A) = 6.02xx10^(23))