Home
Class 12
PHYSICS
A capacitor is given a charge q. The dis...

A capacitor is given a charge `q`. The distance between the plates of the capacitor is `d`. One of the plates is fixed and the other plate is moved away from the other till the distance between them becomes `2d`. Find the work done by the external force.

Text Solution

Verified by Experts

The correct Answer is:
A, B, D

When one plate is fixed, the other is attracted towards the first with a force
`F=q^2/(2Aepsilon_0)=constant`
Hence, an external force of same magnitude will have to be applied in oppositve direction to increase the separation between the plates.
`:. W=F(2d-d)=(q^2d)/(2Aepsilon_0)`
Alternate solution: `W=/_\U=U_f-U_i=q^2/(2C_f)-q^2/(2C_i)`..........i
Here, `C_f=(epsilon_A)/(2d)` and `C_i=(epsilonA)/d`
Substituting in eqn i we have
`W=q^2/(2((epsilonA)/(2d)))-q^2/(2((epsilon_0A)/d))=(q^2d)/(2epsilon_0A)`
Promotional Banner

Topper's Solved these Questions

  • CAPACITORS

    DC PANDEY|Exercise Exercise|155 Videos
  • CAPACITORS

    DC PANDEY|Exercise OBJECTIVE_TYPE|1 Videos
  • ATOMS

    DC PANDEY|Exercise MEDICAL ENTRANCES GALLERY|42 Videos
  • COMMUNICATION SYSTEM

    DC PANDEY|Exercise Subjective|11 Videos

Similar Questions

Explore conceptually related problems

As the distance between the plates of a parallel plate capacitor decreased

The distance between the plates fo a parallel plate capacitor is d. A metal plate of thickness d//2 is placed between the plates, what will be the new capacity ?

The force between the plates of a parallel plate capacitor of capacitance C and distance of separation of the plates d with a potential difference V between the plates, is.

The' distance between the plates of a parallel plate capacitor is d . A metal plate of thickness d//2 is placed between the plates. What will e its effect on the capacitance.

The separation between the plates of a charged parallel-plate capacitor is increased. The force between the plates

The force between the plates of a parrallel plate air capacitor , if charge on capacitor is Q and area of each palte is A , will be

The distance between the plates of a parallel plate condenser is d. If a copper plate of same area but thickness d/2 is placed between the plates then the new capacitance will become -