Home
Class 12
PHYSICS
Find the de-Broglie wavelengths of (a) ...

Find the de-Broglie wavelengths of (a) a 46 g golf ball with a velocity of 30m/s (b) an electron with a velocity of `10^7 m//s.`

Text Solution

AI Generated Solution

The correct Answer is:
To find the de-Broglie wavelengths for the given objects, we will use the de-Broglie wavelength formula: \[ \lambda = \frac{h}{mv} \] where: - \(\lambda\) is the de-Broglie wavelength, - \(h\) is the Planck's constant (\(6.63 \times 10^{-34} \, \text{J s}\)), - \(m\) is the mass of the object in kilograms, - \(v\) is the velocity of the object in meters per second. ### Part (a): Golf Ball 1. **Convert mass of the golf ball to kilograms:** \[ m = 46 \, \text{g} = 0.046 \, \text{kg} \] 2. **Use the given velocity:** \[ v = 30 \, \text{m/s} \] 3. **Substitute the values into the de-Broglie wavelength formula:** \[ \lambda = \frac{6.63 \times 10^{-34} \, \text{J s}}{0.046 \, \text{kg} \times 30 \, \text{m/s}} \] 4. **Calculate the denominator:** \[ mv = 0.046 \, \text{kg} \times 30 \, \text{m/s} = 1.38 \, \text{kg m/s} \] 5. **Calculate the wavelength:** \[ \lambda = \frac{6.63 \times 10^{-34}}{1.38} \approx 4.8 \times 10^{-34} \, \text{m} \] ### Part (b): Electron 1. **Use the mass of the electron:** \[ m = 9.1 \times 10^{-31} \, \text{kg} \] 2. **Use the given velocity:** \[ v = 10^7 \, \text{m/s} \] 3. **Substitute the values into the de-Broglie wavelength formula:** \[ \lambda = \frac{6.63 \times 10^{-34} \, \text{J s}}{9.1 \times 10^{-31} \, \text{kg} \times 10^7 \, \text{m/s}} \] 4. **Calculate the denominator:** \[ mv = 9.1 \times 10^{-31} \, \text{kg} \times 10^7 \, \text{m/s} = 9.1 \times 10^{-24} \, \text{kg m/s} \] 5. **Calculate the wavelength:** \[ \lambda = \frac{6.63 \times 10^{-34}}{9.1 \times 10^{-24}} \approx 7.3 \times 10^{-11} \, \text{m} \] ### Final Answers: - (a) The de-Broglie wavelength of the golf ball is approximately \(4.8 \times 10^{-34} \, \text{m}\). - (b) The de-Broglie wavelength of the electron is approximately \(7.3 \times 10^{-11} \, \text{m}\).

To find the de-Broglie wavelengths for the given objects, we will use the de-Broglie wavelength formula: \[ \lambda = \frac{h}{mv} \] where: - \(\lambda\) is the de-Broglie wavelength, ...
Promotional Banner

Topper's Solved these Questions

  • MODERN PHYSICS - 1

    DC PANDEY|Exercise Exercise 33.2|12 Videos
  • MODERN PHYSICS - 1

    DC PANDEY|Exercise Exercise 33.3|6 Videos
  • MODERN PHYSICS - 1

    DC PANDEY|Exercise Miscellaneous Examples|9 Videos
  • MODERN PHYSICS

    DC PANDEY|Exercise Integer Type Questions|17 Videos
  • MODERN PHYSICS - 2

    DC PANDEY|Exercise Level 2 Subjective|10 Videos

Similar Questions

Explore conceptually related problems

Find the de Broglie wavelength of a 0.01 kg pallet having a velocity of 10 m//s .

What is the de Broglie wavelength of a 2 kg mass moving with a velocity of 10 m/s?

de-Broglie wavelength of a body of mass 1 kg moving with velocity of 2000 m/s is

de - Broglie wavelength of a body of mass 1 kg moving with velocity of 2000 m//s is

The de-Broglie wavelength of a particle with mass 1 g and velocity 100 m//sec is.

Calculate the de-Broglie wavelength of a 0.20 kg ball moving with a speed of 15 m/s

The de-Broglie wavelngth of a tennis ball mass 60 g moving with a velocity fo 10 m per second is approximately :

If the de broglie wavelength of an electron is 1Å, then the velocity of the electron will be

Find the de-Broglie wavelength (inÅ) associated with an electron moving with a velocity 0.6c, where c=3xx10^8 m//s and rest mass of electron =9.1xx10^(-31)kg, h=6.63xx10^(-34)Js .