Home
Class 12
PHYSICS
A metallic surface is illuminated altern...

A metallic surface is illuminated alternatively with light of wavelenghts `3000 Å` and `6000 Å`. It is observed that the maximum speeds of the photoelectrons under these illuminations are in the ratio 3 : 1 . Calculate the work function of the metal and the maximum speed of the photoelectrons in two cases.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we will use the photoelectric effect equations derived from Einstein's photoelectric equation. The maximum kinetic energy of photoelectrons can be expressed as: \[ K_{\text{max}} = \frac{1}{2} m v_{\text{max}}^2 = \frac{hc}{\lambda} - W \] Where: - \( K_{\text{max}} \) is the maximum kinetic energy of the photoelectrons. - \( m \) is the mass of the electron. - \( v_{\text{max}} \) is the maximum speed of the photoelectrons. - \( h \) is Planck's constant (\( 6.626 \times 10^{-34} \, \text{Js} \)). - \( c \) is the speed of light (\( 3 \times 10^8 \, \text{m/s} \)). - \( \lambda \) is the wavelength of the incident light. - \( W \) is the work function of the metal. ### Step 1: Write the equations for both wavelengths For the first wavelength \( \lambda_1 = 3000 \, \text{Å} = 3000 \times 10^{-10} \, \text{m} \): \[ \frac{1}{2} m v_1^2 = \frac{hc}{\lambda_1} - W \tag{1} \] For the second wavelength \( \lambda_2 = 6000 \, \text{Å} = 6000 \times 10^{-10} \, \text{m} \): \[ \frac{1}{2} m v_2^2 = \frac{hc}{\lambda_2} - W \tag{2} \] ### Step 2: Divide equation (1) by equation (2) \[ \frac{v_1^2}{v_2^2} = \frac{\frac{hc}{\lambda_1} - W}{\frac{hc}{\lambda_2} - W} \] Given that the ratio of maximum speeds \( \frac{v_1}{v_2} = 3 \) (i.e., \( v_1 = 3v_2 \)), we have: \[ \frac{v_1^2}{v_2^2} = \left(\frac{3}{1}\right)^2 = 9 \] Thus, we can write: \[ 9 = \frac{\frac{hc}{\lambda_1} - W}{\frac{hc}{\lambda_2} - W} \] ### Step 3: Cross-multiply and simplify \[ 9 \left( \frac{hc}{\lambda_2} - W \right) = \frac{hc}{\lambda_1} - W \] This simplifies to: \[ 9 \frac{hc}{\lambda_2} - 9W = \frac{hc}{\lambda_1} - W \] Rearranging gives: \[ 9 \frac{hc}{\lambda_2} - \frac{hc}{\lambda_1} = 8W \] ### Step 4: Substitute values for \( h \), \( c \), \( \lambda_1 \), and \( \lambda_2 \) Substituting \( h = 6.626 \times 10^{-34} \, \text{Js} \), \( c = 3 \times 10^8 \, \text{m/s} \), \( \lambda_1 = 3000 \times 10^{-10} \, \text{m} \), and \( \lambda_2 = 6000 \times 10^{-10} \, \text{m} \): \[ 9 \left( \frac{6.626 \times 10^{-34} \times 3 \times 10^8}{6000 \times 10^{-10}} \right) - \left( \frac{6.626 \times 10^{-34} \times 3 \times 10^8}{3000 \times 10^{-10}} \right) = 8W \] Calculating the left-hand side: \[ 9 \left( \frac{6.626 \times 10^{-34} \times 3 \times 10^8}{6000 \times 10^{-10}} \right) = 9 \left( \frac{6.626 \times 3}{6000} \times 10^{-34 + 8 + 10} \right) \] \[ = 9 \left( \frac{19.878}{6000} \times 10^{-16} \right) = 2.9817 \times 10^{-16} \] And for the second term: \[ \frac{6.626 \times 10^{-34} \times 3 \times 10^8}{3000 \times 10^{-10}} = \frac{19.878}{3000} \times 10^{-16} = 6.626 \times 10^{-17} \] Now substituting these into the equation: \[ 2.9817 \times 10^{-16} - 6.626 \times 10^{-17} = 8W \] \[ 2.319 \times 10^{-16} = 8W \] \[ W = \frac{2.319 \times 10^{-16}}{8} = 2.89875 \times 10^{-17} \, \text{J} \] Converting to electron volts (1 eV = \( 1.6 \times 10^{-19} \, \text{J} \)): \[ W = \frac{2.89875 \times 10^{-17}}{1.6 \times 10^{-19}} \approx 1.81 \, \text{eV} \] ### Step 5: Calculate maximum speeds \( v_1 \) and \( v_2 \) Now substituting \( W \) back into equation (1) to find \( v_1 \): \[ \frac{1}{2} m v_1^2 = \frac{hc}{\lambda_1} - W \] Substituting values: \[ \frac{1}{2} (9.1 \times 10^{-31}) v_1^2 = \frac{6.626 \times 10^{-34} \times 3 \times 10^8}{3000 \times 10^{-10}} - 1.81 \times 1.6 \times 10^{-19} \] Calculating the right-hand side: \[ \frac{6.626 \times 10^{-34} \times 3 \times 10^8}{3000 \times 10^{-10}} \approx 6.62 \times 10^{-19} \] \[ 1.81 \times 1.6 \times 10^{-19} \approx 2.896 \times 10^{-19} \] \[ \frac{1}{2} (9.1 \times 10^{-31}) v_1^2 = 6.62 \times 10^{-19} - 2.896 \times 10^{-19} = 3.724 \times 10^{-19} \] Now solving for \( v_1 \): \[ v_1^2 = \frac{2 \times 3.724 \times 10^{-19}}{9.1 \times 10^{-31}} \approx 8.2 \times 10^{11} \] \[ v_1 \approx 9 \times 10^5 \, \text{m/s} \] For \( v_2 \): \[ v_2 = \frac{v_1}{3} \approx 3 \times 10^5 \, \text{m/s} \] ### Final Answers - Work function \( W \approx 1.81 \, \text{eV} \) - Maximum speed \( v_1 \approx 9 \times 10^5 \, \text{m/s} \) - Maximum speed \( v_2 \approx 3 \times 10^5 \, \text{m/s} \)

To solve the problem, we will use the photoelectric effect equations derived from Einstein's photoelectric equation. The maximum kinetic energy of photoelectrons can be expressed as: \[ K_{\text{max}} = \frac{1}{2} m v_{\text{max}}^2 = \frac{hc}{\lambda} - W \] Where: - \( K_{\text{max}} \) is the maximum kinetic energy of the photoelectrons. - \( m \) is the mass of the electron. - \( v_{\text{max}} \) is the maximum speed of the photoelectrons. ...
Promotional Banner

Topper's Solved these Questions

  • MODERN PHYSICS - 1

    DC PANDEY|Exercise Level 2 Single Correct|22 Videos
  • MODERN PHYSICS - 1

    DC PANDEY|Exercise Level 2 More Than One Correct|6 Videos
  • MODERN PHYSICS - 1

    DC PANDEY|Exercise Level 1 Objective|37 Videos
  • MODERN PHYSICS

    DC PANDEY|Exercise Integer Type Questions|17 Videos
  • MODERN PHYSICS - 2

    DC PANDEY|Exercise Level 2 Subjective|10 Videos
DC PANDEY-MODERN PHYSICS - 1-Level 1 Subjective
  1. A hydrogen like atom (described by the Bohr model) is observed ot emit...

    Text Solution

    |

  2. The energy levels of a hypothetical one electron atom are shown in t...

    Text Solution

    |

  3. (a) An atom initally in an energy level with E = - 6.52 eV absorbs a ...

    Text Solution

    |

  4. A silver balll is suspended by a string in a vacuum chamber and ultrav...

    Text Solution

    |

  5. A small particle of mass m move in such a way the potential energy (U ...

    Text Solution

    |

  6. Wavelength of Kalpha line of an element is lambda0. Find wavelength o...

    Text Solution

    |

  7. x-rays are produced in an X-ray tube by electrons asselerated through ...

    Text Solution

    |

  8. From what meterial is the anod of an X-ray tube made if the Kalpha li...

    Text Solution

    |

  9. The short-wavelength limit shifts by 26 pm when the operating voltage ...

    Text Solution

    |

  10. The kalpha X-rays of aluminium (Z = 13 ) and zinc ( Z = 30) have wavel...

    Text Solution

    |

  11. Characteristic X-rays of frequency 4.2xx10^18 Hz are produced when tr...

    Text Solution

    |

  12. The electric current in an X-ray tube (from the target to the filament...

    Text Solution

    |

  13. The stopping potential for the photoelectrons emitted from a metal sur...

    Text Solution

    |

  14. What will be the maximum kinetic energy of the photoelectrons ejected ...

    Text Solution

    |

  15. A metallic surface is irradiated with monochromatic light of variable ...

    Text Solution

    |

  16. A graph regarding photoelectric effect is shown between the maximum k...

    Text Solution

    |

  17. A metallic surface is illuminated alternatively with light of waveleng...

    Text Solution

    |

  18. Light of wavelength 180 nm ejects photoelectrons from a plate of met...

    Text Solution

    |

  19. Light described at a palce by te equation E=(100 V/m) [sinxx10^15 s...

    Text Solution

    |

  20. The electric field associated with a light wave is given by E= E0 sin...

    Text Solution

    |