Home
Class 12
MATHS
A is a set containing n elements. A subs...

A is a set containing n elements. A subset P of A is chosen. The set A is reconstructed by replacing the elements of P. A subset Q of A is again chosen, the number of ways of choosing so that `(P cup Q)` is a proper subset of A, is

A

`3^(n)`

B

`4^(n)`

C

`4^(n)-2^(n)`

D

`4^(n)-3^(n)`

Text Solution

Verified by Experts

The correct Answer is:
D

Let `A={a_(1),a_(2),a_(3), . .,a_(n)}`
a general element of A must satisfy one of the following possibilities.
[here, general element be `a_(i)(1leilen)]`
(i) `a_(i) in P,a_(i) in Q`
(ii) `a_(i) in P, a_(i) in Q`
(iii) `a_(i) in P, a_(i) in Q`
(iv) `a_(i) in P, a_(i) in Q`
Therefore, for one element `a_(i)` of A, we have four choices (i), (ii), (iii) and (iv).
`therefore`Total number of cases for all elements=`4^(n)`
and for one element `a_(i)` of A, such that `a_(i) in P cupQ,` we have three choices (i), (ii) and (iii).
`therefore`Number of cases for all elements belong to `P cup Q=3^(n)`
Hence, number of ways in which atleast one element of A does not belong to
`P cup Q=4^(n)-3^(n)`.
Promotional Banner

Topper's Solved these Questions

  • PERMUTATIONS AND COMBINATIONS

    ARIHANT MATHS|Exercise JEE Type Solved Examples: Single Matching Type Questions|1 Videos
  • PERMUTATIONS AND COMBINATIONS

    ARIHANT MATHS|Exercise Exercise For Session 1|11 Videos
  • PARABOLA

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|36 Videos
  • PROBABILITY

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|55 Videos

Similar Questions

Explore conceptually related problems

A is a set containing n elements. A subset P of A is chosen. The set A is reconstructed by replacing the elements of P. A subset of A is again chosen. Find the number of ways of choosing P and Q, so that (i) P capQ contains exactly r elements. (ii) PcapQ contains exactly 2 elements. (iii) P cap Q=phi

A is a set containing n elements. A subset P of A is chosen. The set A reconstructeed by replacing the elements of P. A subset Q of A is again chosen. The number of ways of chosen P and Q so that PnnQ=phi is _____________.

A is a set containing n elements . A subset of A is chosen at random. The set A is reconstructed by replacing the elements of P.A subet Q is again chosen at random. The number of ways of selecting P and Q, is .

A is a set containing n different elements.A subset P of A is chosen.The set A is reconstructed by replacing the elements of P A subset Q of A is again chosen.The number of ways of choosing P and Q so that P nn Q contains exactly two elements is a.^(n)C_(3)xx2^(n) b.^(n)C_(2)xx3^(n-2) c.3^(n-1) d.none of these

A is a set containing n different elements.A subset P of A is chosen.The set A is reconstructed by replacing the elements of P A subset Q of A is again chosen.The number of ways of choosing P and Q so that P nn Q contains exactly two elements is a.^(n)C_(3)xx2^(n) b.^(n)C_(2)xx3^(n-2) c.3^(n-1) d.none of these

A is a set containing n elements. A subset P of A is chosen at random. The set A is reconstructed by replacing the elements of P. A subset Q is again chosen at random. The Probability that P cup Q=A , is

A is a set containing n elements. A subset P of A is chosen at random. The set A is reconstructed by replacing the elements of P. A subset Q is again chosen at random. The probability that P =Q, is

A is a set containing n elements. A subset P of A is chosen at random. The set A is reconstructed by replacing the elements of P. A subset Q is again chosen at random. The Probability that P cup Q contain just one element, is

A is a set containing n elements. A subset P of A is chosen at random. The set A is reconstructed by replacing the elements of P. A subset Q is again chosen at random. The Probability that Q is a subset of P, is

A is a set containing n elements. A subset P of A is chosen at random. The set A is reconstructed by replacing the elements of P. A subset Q is again chosen at random. The Probability that P and Q have equal number of elements, is

ARIHANT MATHS-PERMUTATIONS AND COMBINATIONS -Exercise (Questions Asked In Previous 13 Years Exam)
  1. A is a set containing n elements. A subset P of A is chosen. The set A...

    Text Solution

    |

  2. There is a rectangular sheet of dimension (2m-1)xx(2n-1), (where m > 0...

    Text Solution

    |

  3. If the letters of the word SACHIN are arranged in all possible ways ...

    Text Solution

    |

  4. lf r, s, t are prime numbers and p, q are the positive integers such t...

    Text Solution

    |

  5. At an election a voter may vote for nany number of candidates , not gr...

    Text Solution

    |

  6. The letters of the word COCHIN are permuted and all the permutation...

    Text Solution

    |

  7. The set S""=""{1,""2,""3,"" ,""12) is to be partitioned into three...

    Text Solution

    |

  8. Consider all possible permutations of the letters of the word ENDEANOE...

    Text Solution

    |

  9. How many different words can be formed by jumbling the letters in the ...

    Text Solution

    |

  10. In a shop, there are five types of ice-creams available. A child buys ...

    Text Solution

    |

  11. The number of seven digit integers, with sum of the digits equal to 10...

    Text Solution

    |

  12. From 6 different novels and 3 different dictionaries, 4 novels and ...

    Text Solution

    |

  13. There are two urns. Urn A has 3 distinct red balls and urn B has 9 d...

    Text Solution

    |

  14. Statement-1: The number of ways of distributing 10 identical balls in ...

    Text Solution

    |

  15. There are 10 points in a plane, out of these 6 are collinear. The numb...

    Text Solution

    |

  16. The total number of ways in which 5 balls of differert colours can be ...

    Text Solution

    |

  17. Let n denote the number of all n-digit positive integers formed by the...

    Text Solution

    |

  18. Let a(n) denote the number of all n-digit numbers formed by the digits...

    Text Solution

    |

  19. Assuming the balls to be identical except for difference in colours, t...

    Text Solution

    |

  20. Let Tn be the number of all possible triangles formed by joining ve...

    Text Solution

    |

  21. Consider the set of eight vector V={a hat i+b hat j+c hat k ; a ,bc in...

    Text Solution

    |