Home
Class 12
MATHS
If .^(20)C(n+1)=.^(n)C(16), the value of...

If `.^(20)C_(n+1)=.^(n)C_(16)`, the value of n is

A

7

B

10

C

13

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \binom{20}{n+1} = \binom{n}{16} \), we will follow these steps: ### Step 1: Understand the Binomial Coefficient The binomial coefficient \( \binom{n}{r} \) is defined as: \[ \binom{n}{r} = \frac{n!}{r!(n-r)!} \] In our case, we have \( \binom{20}{n+1} \) and \( \binom{n}{16} \). ### Step 2: Set Up the Equation From the equation \( \binom{20}{n+1} = \binom{n}{16} \), we can express it using the formula for binomial coefficients: \[ \frac{20!}{(n+1)!(20-n-1)!} = \frac{n!}{16!(n-16)!} \] ### Step 3: Analyze the Conditions We know that for \( \binom{20}{n+1} \) to be valid, \( n+1 \) must be less than or equal to 20, which gives us: \[ n + 1 \leq 20 \implies n \leq 19 \] For \( \binom{n}{16} \) to be valid, \( n \) must be at least 16: \[ n \geq 16 \] ### Step 4: Combine the Conditions From the above conditions, we have: \[ 16 \leq n \leq 19 \] This means \( n \) can take the values 16, 17, 18, or 19. ### Step 5: Check Possible Values Now we will check which of these values satisfy the original equation \( \binom{20}{n+1} = \binom{n}{16} \): 1. **For \( n = 16 \)**: \[ \binom{20}{17} = \binom{16}{16} \implies 20 = 1 \quad \text{(not valid)} \] 2. **For \( n = 17 \)**: \[ \binom{20}{18} = \binom{17}{16} \implies 190 = 17 \quad \text{(not valid)} \] 3. **For \( n = 18 \)**: \[ \binom{20}{19} = \binom{18}{16} \implies 20 = 153 \quad \text{(not valid)} \] 4. **For \( n = 19 \)**: \[ \binom{20}{20} = \binom{19}{16} \implies 1 = 969 \quad \text{(not valid)} \] ### Conclusion None of the values from 16 to 19 satisfy the equation. Therefore, the answer is that there is no valid \( n \) in the given range. ### Final Answer The value of \( n \) is **none of these**. ---
Promotional Banner

Topper's Solved these Questions

  • PERMUTATIONS AND COMBINATIONS

    ARIHANT MATHS|Exercise Exercise For Session 5|18 Videos
  • PERMUTATIONS AND COMBINATIONS

    ARIHANT MATHS|Exercise Exercise For Session 6|28 Videos
  • PERMUTATIONS AND COMBINATIONS

    ARIHANT MATHS|Exercise Exercise For Session 3|11 Videos
  • PARABOLA

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|36 Videos
  • PROBABILITY

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|55 Videos

Similar Questions

Explore conceptually related problems

If .^(n)C_(12) = .^(n)C_(16) , find the value of n

The value of C(n+1,n) is

If ^(n)C_(5)=^(n)C_(7) ,then the value of n is

If ^(n)C_(12)=^(n)C_(5), find the value of n

If ^(n)P_(r)=^(n)P_(r+1) and ^(n)C_(r)=^(n)C_(r-1, then the ) value of n+r is.

If (1)/(""^(4)C_(n))=(1)/(""^(5)C_(n))+(1)/(""^(6)C_(n)) , then value of n is:

If ""^(n)C_(8)= ""^(n)C_(9) , find the value of n.

If .^(n+1)C_(3)=2(.^(n)C_(2)) , find the value of n.

If ""^(n)P_(r) = ""^(n)P_(r+1) and ""^(n)C_(r) = ""^(n) C_(r-1) then the value of r is equal to