Home
Class 12
MATHS
If ""^(47)C(4)+sum(r=1)^(5) ""^(52-r)C(3...

If `""^(47)C_(4)+sum_(r=1)^(5) ""^(52-r)C_(3)` is equal to

A

`.^(47)C_(6)`

B

`.^(52)C_(5)`

C

`.^(52)C_(4)`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem \( \binom{47}{4} + \sum_{r=1}^{5} \binom{52-r}{3} \), we will use the properties of combinations, specifically the identity that relates combinations of consecutive integers. ### Step-by-step Solution: 1. **Understanding the Sum**: We start with the expression \( \sum_{r=1}^{5} \binom{52-r}{3} \). This means we will calculate the values of \( \binom{52-1}{3}, \binom{52-2}{3}, \binom{52-3}{3}, \binom{52-4}{3}, \) and \( \binom{52-5}{3} \). 2. **Calculating Each Term**: - For \( r = 1 \): \( \binom{51}{3} \) - For \( r = 2 \): \( \binom{50}{3} \) - For \( r = 3 \): \( \binom{49}{3} \) - For \( r = 4 \): \( \binom{48}{3} \) - For \( r = 5 \): \( \binom{47}{3} \) Thus, we can rewrite the sum as: \[ \sum_{r=1}^{5} \binom{52-r}{3} = \binom{51}{3} + \binom{50}{3} + \binom{49}{3} + \binom{48}{3} + \binom{47}{3} \] 3. **Applying the Combination Identity**: We will use the identity: \[ \binom{n}{r} + \binom{n}{r+1} = \binom{n+1}{r+1} \] to combine the terms. 4. **Combining Terms**: - Start with \( \binom{51}{3} + \binom{50}{3} \): \[ \binom{51}{3} + \binom{50}{3} = \binom{52}{4} \] - Now, add \( \binom{49}{3} \): \[ \binom{52}{4} + \binom{49}{3} = \binom{50}{4} \] - Next, add \( \binom{48}{3} \): \[ \binom{50}{4} + \binom{48}{3} = \binom{49}{4} \] - Finally, add \( \binom{47}{3} \): \[ \binom{49}{4} + \binom{47}{3} = \binom{48}{4} \] 5. **Final Calculation**: Now we have: \[ \sum_{r=1}^{5} \binom{52-r}{3} = \binom{48}{4} \] Therefore, the original expression becomes: \[ \binom{47}{4} + \binom{48}{4} \] Applying the combination identity again: \[ \binom{47}{4} + \binom{48}{4} = \binom{49}{5} \] 6. **Conclusion**: Thus, the final result is: \[ \binom{49}{5} \]
Promotional Banner

Topper's Solved these Questions

  • PERMUTATIONS AND COMBINATIONS

    ARIHANT MATHS|Exercise Exercise For Session 5|18 Videos
  • PERMUTATIONS AND COMBINATIONS

    ARIHANT MATHS|Exercise Exercise For Session 6|28 Videos
  • PERMUTATIONS AND COMBINATIONS

    ARIHANT MATHS|Exercise Exercise For Session 3|11 Videos
  • PARABOLA

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|36 Videos
  • PROBABILITY

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|55 Videos

Similar Questions

Explore conceptually related problems

The value of the expression ""^(47)C_(4) + sum_(i=1)^(5) ""^(52-i)C_(3) is

What is ""^(47)C_(4)+""^(51)C_(3)+ sum_(j=2)^(5) ""^(52-j)C_(3) equal to ?

The value of ""^(50)C_(4)+sum_(r=1)^(6)""^(56-r)C_(3) , is

sum_(r=0)^(n)(""^(n)C_(r))/(r+2) is equal to :

C(47,4)+sum_(r=1)^5 C(52-r,3)=

sum_(r=0)^(m)*^(n+r)C_(n) is equal to