Home
Class 12
MATHS
The number of ways of choosing triplet (...

The number of ways of choosing triplet `(x , y ,z)` such that `zgeqmax{x, y}a n dx ,y ,z in {1,2, n ,n+1}` is a. `^n+1C_3+^(n+2)C_3` b. `n(n+1)(2n+1)//6` c. `1^2+2^2++n^2` d. `2((^(n+2)C_3))_(-^(n+2))C_2`

A

`.^(n+1)C_(3)+.^(n+2)C_(3)`

B

`(n(n+1)(2n+1))/(6)`

C

`1^(2)+2^(2)+3^(2)+ . . .+n^(2)`

D

`2(.^(n+2)C_(3))-.^(n+1)C_(2)`

Text Solution

Verified by Experts

The correct Answer is:
A, B, C, D

Triplets with
(i) x=y`ltz`
(ii) `x lt y lt z`
(iii) `y lt x lt z`
can be chosen in `.^(n+1)C_(2),.^(n+1)C_(3),.^(n+1)C_(3)` ways.
`therefore.^(n+1)C_(2)+.^(n+1)C_(3)+.^(n+1)C_(3)=.^(n+2)C_(3)+.^(n+1)C_(3)`
`=2(.^(n+2)C_(3))-.^(n+1)C_(2)`
`=(n(n-1)(2n+1))/(6)`
Promotional Banner

Topper's Solved these Questions

  • PERMUTATIONS AND COMBINATIONS

    ARIHANT MATHS|Exercise Exercise (Passage Based Questions)|15 Videos
  • PERMUTATIONS AND COMBINATIONS

    ARIHANT MATHS|Exercise Exercise (Single Integer Answer Type Questions)|10 Videos
  • PERMUTATIONS AND COMBINATIONS

    ARIHANT MATHS|Exercise Exercise (Single Option Correct Type Questions)|30 Videos
  • PARABOLA

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|36 Videos
  • PROBABILITY

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|55 Videos

Similar Questions

Explore conceptually related problems

The number of ways of choosing triplet (x,y,z) such that z>max{x,y} and x,y,z in{1,2,.........n,n+1} is (A)*^(n)+1C_(3)+^(n+2)C_(3)(B)n(n+1)(2n+1)/6(C)1^(2)+2^(2)+.............+n^(2)(D)2(.^(n+2)C_(3))-(.^(n+1)C_(2))

2C_0 + 2^2 (C_1)/(2) + 2^3 (C_2)/(3) + ………. + 2^(n+1) (C_n)/(n+1) = (3^(n+1) - 1)/(n+1)

Let A be a set of n(>=3) distance elements. The number of triplets (x,y,z) of the A elements in which at least two coordinates is equal to a.^(n)P_(3) b.n^(3)-^(n)P_(3) c.3n^(2)-2n d.3n^(2)-(n-1)

If (.^(2n)C_1)^2+ 2.(.^(2n)C_2)^2+3.(.^(2n)C_3)^2+...+2n. (.^(2n)C_(2n))^2 = 18 .^(4n-1)C_(2n-1)

The value of |1 1 1\ ^n C_1\ ^(n+2)C_1\ ^(n+4)C_1\ ^n C_2\ ^(n+2)C_2\ ^(n+4)C_2| is (a) 2 (b) 4 (c) 8 (d) n^2

The arithmetic mean of 1,2,3,...n is (a) (n+1)/(2) (b) (n-1)/(2) (c) (n)/(2)(d)(n)/(2)+1