Home
Class 12
MATHS
1^(3)+2^(2)+3^(3)+. . .+n^(3)=((n(n+1))/...

`1^(3)+2^(2)+3^(3)+. . .+n^(3)=((n(n+1))/(2))^(2)`.

Text Solution

Verified by Experts

Let `P(n):1^3+2^3+3^3+.....+n^3=[(n(n+1))/(2)]^2`......(i)
Step I For `n=1`, LHS of Eq.(i) `=^3=1` and RHS of Eq. (i). `[(1(1+1))/(2)]^2=1^2=1`
`therefore LHS=RHS`
Therefore ,P(1), is ture.
Step II Assume P(k) is true , then
`P(k):1^3+2^3+3^3+.....K^3=[(k(k+1))/(2)]^2`
Step III For `n=k+1`,
`P(k+1):1^3+2^3+3^3+......+^3(k+1)^3`
`=[((k+1)+(k+2))/(2)] ^2`
LHS `=1^3+2^3+3^3+.....+k^3+(k+1)^3=[(k(k+1))/(2)]^2+(k+1)^3` [by assumption step]
`=((k+1)^2)/(4)[k^2+4(k+1)]`
`=((k+1)^2(k^2+4k+4))/(4)`
`=((k+1)^2(k+2)^2)/(4)`
`=[(k+1(k+2))/(2)]^2=RHS`
Therefore , `P(k+1)` is true , Hence , by the principle of mathematical induction , P(n)is true for all `n epsi N`.
Promotional Banner

Topper's Solved these Questions

  • MATHEMATICAL INDUCTION

    ARIHANT MATHS|Exercise Mathematical Induction Exercise 1: (Single Option Correct Tpye Questions)|3 Videos
  • MATHEMATICAL INDUCTION

    ARIHANT MATHS|Exercise Exercise (Statement I And Ii Type Questions)|3 Videos
  • LOGARITHM AND THEIR PROPERTIES

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|4 Videos
  • MATRICES

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|49 Videos

Similar Questions

Explore conceptually related problems

1^(3)+2^(3)+3^(3)+....+n^(3)=((n(n+1))/(2))^(2)

Prove that : 1^(3)+2^(3)+3^(3)++n^(3)={(n(n+1))/(2)}^(2)

1^(3)+2^(3)+3^(3)+...+n^(3)=n^(2)((n+1)^(2))/(4)

1^(3)+2^(3)+3^(3)+.....+n^(3)=(n(n+1)^(2))/(4), n in N

Match the following . {:(,"ColumnI",,"ColumnII"),((i) ,1^(2) +2^(2) +3^(2) +....+n^(2) ,(a) ,[(n(n+1))/(2)]^(2)),((ii) , 1^(3) +2^(2) +3^(2) +...+n^(3) ,(b), n(n+1)),((iii),2+4+6+...+2n,( c),(n(n+1)(2n+1))/(6)),((iv),1+2+3+...+n,(d),(n(n+1))/(2)):}

The value of lim_(xto oo)(1^(3)+2^(3)+3^(3)+……..+n^(3))/((n^(2)+1)^(2))

lim_(n rarr oo)(n(1^(3)+2^(3)+3^(3)+cdots n^(3))^(2))/((1^(2)+2^(2)+3^(2)+cdots+n^(2))^(3)) =

Prove the following by using the principle of mathematical induction for all n in Nvdots1.3+2.3^(2)+3.3^(3)+...+n.3^(n)=((2n-1)3^(n+1)+3)/(4)

lim_ (n rarr oo) (1 ^ (3) + 2 ^ (3) + 3 ^ (3) ++ n ^ (3)) / (n ^ (2) (n ^ (2) +1))