Home
Class 12
MATHS
Prove by mathematical induction that sum...

Prove by mathematical induction that `sum_(r=0)^(n)r^(n)C_(r)=n.2^(n-1), forall n in N`.

Text Solution

Verified by Experts

Let `P(n):sum_(r=0)^(n)r^(n)C_(r)=n.2^(n-1)`
Step I For n=1,
LHS of Eq. (i) `=sum_(r=0)^(1)r.^(1)C_(r)=0+1.^(1)C_(1)=1` and RHS of Eq. (i) `=1.2^(1-1)=2^(0)=1`
Therefore , P(1) is true .
Step II Assume that P(k) is true , then P(k) : `sum_(r=0)^(k)r.^(k)C_(r)=k.2^(k-1)`
Step III For `n=k+1`
`P(k+1):sum_(r=0)^(k+1)r.^(k+1)C_(r)=(k+1).2^(k)`
`therefore LHS =sum_(r=0)^(k+1)r.^(k+1)C_(r)=0+sum_(r=1)^(k+1)r.^(k+1)C_(r)`
`=sum_(r=1)^(k+1)r.^(k+1)C_(r)=sum_9r=1)^(k)r.^(k+1)C_(r)+(k+1).^(k+1)C_(k+1)`
`=sum_(r=1)^(k)r(.^(k)C_(r)+.^(k)C_(r-1))+(k+1)`
`=sum_(r=1)^(k)r.^(k)C_(r)+sum_(r=0)^(k)r.^(k)C_(r-1)+(k+1)`
`=sum_(r=0)^(k)r.^(k)C_(r)+sum_(r=0)^(k+1)r.^(k)C_(r-1)`
`=sum_(r=0)^(k)r.^(k)C_(r)+sum _(r=0)^(k)(r+1).^(k)C_r)`
`=sum_(r=0)^(k)r.^(k)C_(r)+sum_(r=0)^(k)r.^(k)C_(r)+sum_(r=0)^(k).^(k)C_(r)`
`=P(k)+P(k)+2^k` [by assumption step]
`=k.2^(k-1)+k.26(k-1)+2^(k)=2.k.2^k-1+2^k`
`=k.2^k+2^k=(k+1).2^k=RHS`
Therefore , `P(k+1)` is true. Hence , by the principle of mathematical induction `P(n)` is true for all `n in N`.
Promotional Banner

Topper's Solved these Questions

  • MATHEMATICAL INDUCTION

    ARIHANT MATHS|Exercise Mathematical Induction Exercise 1: (Single Option Correct Tpye Questions)|3 Videos
  • MATHEMATICAL INDUCTION

    ARIHANT MATHS|Exercise Exercise (Statement I And Ii Type Questions)|3 Videos
  • LOGARITHM AND THEIR PROPERTIES

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|4 Videos
  • MATRICES

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|49 Videos

Similar Questions

Explore conceptually related problems

Evaluate sum_(r=0)^(n) ""^(n+r)C_(n) .

Prove that sum_(r=0)^(2n)(.^(2n)C_(r))^(2)=n^(4n)C_(2n)

Prove that sum_(r=0)^(n)r(n-r)C_(r)^(2)=n^(2)(^(2n-2)C_(n))

Evaluate : sum_(r = 1)^(n) ""^(n)C_(r) 2^r

sum_(r=0)^(n)(""^(n)C_(r))/(r+2) is equal to :

Prove that sum_(n)^(r=0) ""^(n)C_(r)*3^(r)=4^(n).

What is sum_(r=0)^(1) ""^(n+r)C_(n) equal to ?

sum_(r=0)^(n)((n-3r+1)^(n)C_(r))/((n-r+1)2^(r)) is equal to