Home
Class 12
MATHS
prove that 7 + 77 + 777 +...... + 777.....

prove that `7 + 77 + 777 +...... + 777........._(n-digits) 7 = 7/81 (10^(n+1) - 9n - 10)` for all `n in N`

A

Statement -1 is true , Statement -2 is true Statement -2 is correct explanation for Statement -1.

B

Statement -1 is true , Statement -2 is true , Statement -2 is not the correct explanation for Statement -2

C

Statement-1 is true , Statement-2 is false

D

Statement-1 is false , Statement -2 is true .

Text Solution

Verified by Experts

The correct Answer is:
C

`because ubrace(777......7)_("n digits")=7ubrace((111......1))_("n digits")`
`=7(1+10+10^2+....+10^(n-1))`
`=7+7xx10+7xx10^2+......+7xx10^(n-1)`
`ne 7+7xx10+7xx10^(2)+....+7xx10^n)`
`therefore` Statement -2 is false .
Now ,let `P(n):7+77+777+.....+ubrace(777......7)_("n digits")=(7)/(81)(10^(n+1)-9n-10)`
Step I For n=1,
LHS =7 and RHS `=(7)/(81)(10^2-9-10)=7`
`therefore LHS=RHS`
which is true for `n=1`.
Step II Assume P(n) is true for n=k, then
`P(k):7+77+777+.....+ubrace(777......7)_("k digits")=(7)/(81)(10^(k+1)-9k-10)`
Step III For `n=k+1`.
`P(k+1):7+77+777+....+ubrace(777......7)_("n digits")+ubrace(777.7)_((k+1)digits)=`
`(7)/(81)[10^(k+2)-9(k+1)-10]`
LHS =7+77+777+.....+ubrace(777......7)_("k digits")+ubrace(777......7)_((k+1)digits)`
`=(7)/(81)(10^(k+1)-9k-10)+7(1+10+10^2+......+10^k)`
`=(7)/(81)(10^(k+1)-9k-10)+(7(1k^(k+1)-1))/(10-1)`
`=(7)/(81)(10^(k+1)-9k-10+9.10^(k+1)-9)`
`=(7)/(81)[10^(k+1)(1+9)-9(k+1-10]`
`=(7)/(81)[10^(k+2-9(k+1-10]`
`=RHS`
Therefore , `P(k+1)` is true . Hence , by mathematical induction `P(n)` is true for all natural numbers .
Hence , Statement-1is true and Statement -2 is false .
Promotional Banner

Topper's Solved these Questions

  • MATHEMATICAL INDUCTION

    ARIHANT MATHS|Exercise Mathematical Induction Exercise 1: (Single Option Correct Tpye Questions)|3 Videos
  • MATHEMATICAL INDUCTION

    ARIHANT MATHS|Exercise Exercise (Statement I And Ii Type Questions)|3 Videos
  • LOGARITHM AND THEIR PROPERTIES

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|4 Videos
  • MATRICES

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|49 Videos

Similar Questions

Explore conceptually related problems

Prove the following by the principle of mathematical induction: 7+77+777++777++ddot n-digits7=(7)/(81)(10^(n+1)-9n-10) for all n in NB.

Evaluate 7+77+777+...... upto n

3^(2n)+7 is divisible by 8 for all n varepsilon N

7, 77, 77, 777 div 77 equals

Sum of n terms of the series 8 + 88 + 888 + .... equals (a) 8/81 [10^(n+1) - 9n - 10] (b) 8/81[10^n - 9n -10] (c) 8/81[10^(n+1) - 9n + 10] (d)none of these

.The sum to 'n' terms of the series 9 + 99 + 999 ... ... is ] , [ 1) (10 ( 10^ n − 1 ) − n) 2) (10/ 9 [ 10^ n − 1 ] + n) 3) (10/ 9 [ 10^ n − 1 ] − n) 4) (10/ 9 [ 10^ n − 1) ]

Prove that 2.7^(n)+3.5^(n)-5 is divisible by 24, for all n in N

Prove that the number (444.........4)/(ndigit),(888..........89)/((n-1)digit) is a perfect square of the number (666.......6)/((n-1)digit)7

The sum of 10 terms of the series 0.7+0.77+0.777+....... is

The A.M.of the observations 1.3.5,3.5.7,5.7.9,......,(2n-1)(2n+1)(2n+3) is (AA n in N)