Home
Class 12
MATHS
Prove by mathematical induction that (1)...

Prove by mathematical induction that `(1)/(1+x)+(2)/(1+x^2)+(4)/(1+x^4)+.....+(2^n)/(1+x^(2^n))=(1)/(x-1)+(2^(n+1))/(1-x^(2^(n+1)))` where , `|x|ne 1 ` and n is non - negative integer.

Text Solution

Verified by Experts

Let`P(n):(1)/(1+x)+(2)/(1+x^2)+(4)/(1+x^4)+.....+(2^n)/(1+x^(2^(n)))`
`=(1)/(x-1)+(2^(n+1))/(1-x^(2^(n+1)))` .....(i)
Step I For `n=1`,
LHS of Eq. (i) =(1)/(1+x)+(2)/(1+x^2)`
Promotional Banner

Topper's Solved these Questions

  • MATHEMATICAL INDUCTION

    ARIHANT MATHS|Exercise Mathematical Induction Exercise 1: (Single Option Correct Tpye Questions)|3 Videos
  • MATHEMATICAL INDUCTION

    ARIHANT MATHS|Exercise Exercise (Statement I And Ii Type Questions)|3 Videos
  • LOGARITHM AND THEIR PROPERTIES

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|4 Videos
  • MATRICES

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|49 Videos

Similar Questions

Explore conceptually related problems

cos^(-1)((1-x^(2n))/(1+x^(2n)))

Show that 1/(x+1)+2/(x^2+1)+4/(x^4+1)+…..+2^n/(x^(2n)+1)=1 /(x-1)- 2^(n+1)/(x^(2^(n+1)) -1)

Obtain the sum of (1)/(x+1)+(2)/(x^(2)+1)+(4)/(x^(4)+1)+......+(2^(n))/(x^(2^(n))+1)

Prove that (nC_(0))/(x)-(n_(C_(0)))/(x+1)+(^nC_(1))/(x+2)-...+(-1)^(n)(n_(n))/(x+n)=(n!)/(x(x+1)...(x-n)) where n is any positive integer and x is not a negative integer.

if |x|<1 then (Lt)_(n rarr oo)(1+x)(1+x^(2))(1+x^(4))......*(1+x^(2n))=

n + (n-1) x + (n-2) x ^ (2) + ....... + 2x ^ (n-2) + x ^ (n-1)

Using mathematical induction prove that x+4x+7x+......+(3n-2)x=(1)/(2)n(3n-1)x

Prove the following by the principle of mathematical induction: (1)/(2)tan((x)/(2))+(1)/(4)tan((x)/(4))++1/2^(n)tan((x)/(2^(n)))=(1)/(2^(n))cot((x)/(2^(n)))-cot x for all nin N backslash and backslash0

If |x|<1 , then lim_(n rarr oo)(1+x)(1+x^(2))(1+x^(4))...(1+x^(2^n))=