Home
Class 12
MATHS
Using the principle of mathematical indu...

Using the principle of mathematical induction to prove that `int_(0)^(pi//2)(sin^2nx)/(sinx)dx=1+(1)/(3)+(1)/(5)+.....+(1)/(2n-1)`

Text Solution

Verified by Experts

Let `P(n): int _(0)^(pi//2)(sin^2nx)/(sinx)dx=1+(1)/(3)+(1)/(5)+......+(1)/(2n-1)` ..........(i)
Step I For n =1
LHS of Eq. 9i) `= int_(0)^(pi//2)(sin^2x)/(sinx)dx=int_(0)^(pi//2)sin xdx=-[cosx]_(0)^(pi//2)=-(0-1)=1` and RHS of Eq. (i) =1
Therefore , P(1) is true .
Step II Assume it is true for n=k, then
`P(k):int_(0)^(pi//2)(sin^2kx)/(sinx)dx=1+(1)/(3)+(1)/(5)+.......+(1)/(2k-1)`
Step III For `n=k+1`,
`P(k+1):int_(0)^(pi//2)(sin^2(k+1)x)/(sinx)dx=1+(1)/(3)+(1)/(5)+.....+(1)/(2k-1)+(1)/(2k+1)`
LHS `=int_(0)^(pi//2)(sin(k+1)x)/(sinx)kdx`
`=int_(0)^(pi//2)(sin^2(k+1)x-sin^2kx+sin^2kx)/(sinx)dx`
`=int_(0)^(pi//2)(sin^2(k+1)x-sin^2kx)/(sinx)dx+int_(0)^(pi//2)(sin^2kx)/(sinx)dx`
`=int_(0)^(pi//2)(sin(2k+1)xsinx)/(sinx)dx+P(k)` [by assumption step]
`=int_(0)^(pi//2)sin(2k+1)xdx+P(k)`
`=-[(cos (2k+1)x)/(2k+1)]_(0)^(pi//2)+P(k)`
`=-(1)/((2k+1))[cos(pik+(pi)/(2))-1]+P(k)`
`=-(1)/((2k+1))[-sinpik-1]+P(k)`
`=-(1)/(2k+1)[-0-1]+P(k)`
`=(1)/((2k+1))+1+(1)/(3)+(1)/(5)+......+(1)/((2k-1))` [by assumption step]
`=1+(1)/(3)+(1)/(5)+.....+(1)/((2k-1))+(1)/((2k+1))=RHS`
This shows that the result is true for `n=k+1`. Hence , by the principle of mathematical induction , the result is true for all `n in N`,
Promotional Banner

Topper's Solved these Questions

  • MATHEMATICAL INDUCTION

    ARIHANT MATHS|Exercise Mathematical Induction Exercise 1: (Single Option Correct Tpye Questions)|3 Videos
  • MATHEMATICAL INDUCTION

    ARIHANT MATHS|Exercise Exercise (Statement I And Ii Type Questions)|3 Videos
  • LOGARITHM AND THEIR PROPERTIES

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|4 Videos
  • MATRICES

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|49 Videos

Similar Questions

Explore conceptually related problems

Using principle of mathematical induction, prove the following 1+3+5+...+(2n-1)=n^(2)

By using principle of mathematical induction, prove that 2+4+6+….2n=n(n+1), n in N

Using the principle of mathematical induction , prove that for n in N , (1)/(n+1) + (1)/(n+2) + (1)/(n+3) + "……." + (1)/(3n+1) gt 1 .

Using the principle of mathematical induction prove that (1+x)^(n)>=(1+nx) for all n in N, where x>-1

Using the principle of mathematical induction, prove that 1/(1*2)+1/(2*3)+1/(3*4)+…+1/(n(n+1)) = n/((n+1)) .

Using the principle of mathematical induction prove that 1+(1)/(1+2)+(1)/(1+2+3)+(1)/(1+2+3+4)+...+(1)/(1+2+3+...+n)=(2n)/(n+1) for all n in N

int_(-pi/2)^(pi/2)(1+sin^2x)/(1+pi^(sinx))dx=

Using the principle of mathematical induction prove that (1)/(1.2.3)+(1)/(2.3.4)+(1)/(3.4.5)+...+(1)/(n(n+1)(n+2))=(n(n+3))/(4(n+1)(n+2) for all n in N

Prove the following by using the principle of mathematical induction for all n in Nvdots(1+(1)/(1))(1+(1)/(2))(1+(1)/(3))...(1+(1)/(n))=(n+1)

Prove the following by using the principle of mathematical induction for all n in Nvdots(1)/(2)+(1)/(4)+(1)/(8)+...+(1)/(2^(n))=1-(1)/(2^(n))