Home
Class 12
MATHS
Use induction to show that for all n in ...

Use induction to show that for all `n in N`.
`sqrt(a+sqrt(a+sqrt(a+....+sqrt(a))))lt (1+sqrt((4a+1)))/(2)`
where'a' is fixed positive number and n radical signs are taken on LHS.

Text Solution

Verified by Experts

Let `P(n):sqrt(a+sqrt(a+sqrt(a+.....+sqrt(a))))lt 1+sqrt(((4a+1))/(2)`
Step I For `n=1` , then `sqrt(a)lt 1+sqrt((4a+1))/(2)`
`rArr 2sqrt(a) lt 1+sqrt((4a+1))`
`rArr 4alt 1+4a+1+2sqrt((4a+1))`
`rArr 2sqrt((4a+1))+2 gt 0` which is true .
Therefore , P(1) is ture .
Step II Assume it is true for n`=k` .
`P(k): ubrace(sqrt(a+sqrt(a+sqrt(a+....+sqrt(a)))))_("k radical signs")lt (1+sqrt(4a+1))/(2)`
Step III For `n =k+1`,
`P(k+1):ubrace(sqrt(a+sqrt(a+sqrt(a+....+sqrt(a)))))_("(k+1) radical signs")lt (1+sqrt((4a+1)))/(2)`
From assumption step
`ubracesqrt(a+sqrt(a+sqrt(a+......+sqrt(a))))_("k radical signs")lt (1+sqrt(4a+1))/(2)`
`a+ubracesqrt(a+sqrt(a+sqrt(a+......+sqrt(a))))_("k radical signs")lt (1+sqrt((4a+1)))/(2)`
`rArrubracesqrt(a+sqrt(a+sqrt(+sqrt(a+....+sqrt(a)))))_((k+1)"radical signa")lt sqrt(a+(1+sqrt((4a+1)))/(2))`
`=sqrt((2a+1+sqrt((4a+1)))/(2))=sqrt((4a+2+2sqrt((4a+1)))/(4))`
`=sqrt(((sqrt((4a+1)))^2+1+2sqrt((4a+1)))/(4))`
`=sqrt(((1+sqrt((4a+1)))/(2))^2)=(1+sqrt((4a+1)))/(2)`
`therefore ubracesqrt(a+sqrta+sqrt(a+sqrt(a+....+sqrt(a))))_((k+1)"radical signs")lt (1+sqrt((4a+1)))/(2)`
which is true for `n=k+1`.
Hence , by the principle of mathematical induction , the result is true for all ` n in N `.
Promotional Banner

Topper's Solved these Questions

  • MATHEMATICAL INDUCTION

    ARIHANT MATHS|Exercise Mathematical Induction Exercise 1: (Single Option Correct Tpye Questions)|3 Videos
  • MATHEMATICAL INDUCTION

    ARIHANT MATHS|Exercise Exercise (Statement I And Ii Type Questions)|3 Videos
  • LOGARITHM AND THEIR PROPERTIES

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|4 Videos
  • MATRICES

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|49 Videos

Similar Questions

Explore conceptually related problems

Show that (-sqrt(-1))^(4n+3) =i , where n is a positive integer.

Use the principle of mathematical induction to prove that for all n in N sqrt(2+sqrt(2+sqrt2+...+...+sqrt2))=2cos ((pi)/(2^(n+1))) When the LHS contains n radical signs.

Prove that 2^(n)>1+n sqrt(2^(n-1)),AA n>2 where n is a positive integer.

lim_(n to oo)[(sqrt(n+1)+sqrt(n+2)+....+sqrt(2n))/(n sqrt((n)))]

For all n in N,1+(1)/(sqrt(2))+(1)/(sqrt(3))+(1)/(sqrt(4))++(1)/(sqrt(n))

The value of lim_(n rarr oo)(sqrt(1)+sqrt(2)+sqrt(3)+....+2sqrt(n))/(n sqrt(n)) is

(sqrt(31+sqrt(31+sqrt(31+...))))/(sqrt(1+sqrt(1+sqrt(1+...))))=a-sqrt(b) where a,b in N then find the value of a+b

If n = 7 + 4sqrt(3) then value of (sqrt(n) + 1/(sqrtn)) is

If (sqrt(2n^(2)+n)-lambda sqrt(2n^(2)-n))=(1)/(sqrt(2))( where lambda is real number),then

If N=(sqrt(sqrt(5)+2)+sqrt(sqrt(5)-2))/(sqrt(sqrt(5)+1))-sqrt(3-2sqrt(2)) , then N+2 equals