Home
Class 11
CHEMISTRY
Calculate the standard molar entropy cha...

Calculate the standard molar entropy change for the formation of gaseous propane `(C_(3)H_(8))` at `293K`.
`3C("graphite") +4H_(2)(g) rarr C_(3)H_(8)(g)`
Standard molar entropies `S_(m)^(Theta) (JK^(-1)mol^(-1))`are:
`C("graphite") = 5.7, H_(2)(g) = 130.7,C_(3)H_(5)(g) = 270.2`

Text Solution

Verified by Experts

Standard molar entropy change,
`Delta_(r)S_(m)^(Theta) = S_(m)^(Theta) (C_(3)H_(8))-[3S_(m)^(Theta) (C ) +4S_(m)^(Theta) (H_(2))]`
`= 270.2 -[3 xx 5.7 +4 xx 130.7]`
`= 270.2 - 539.9 =- 269.7 J K^(-1)`
Promotional Banner

Topper's Solved these Questions

  • THERMODYNAMICS

    CENGAGE CHEMISTRY|Exercise Ex 6.5|30 Videos
  • THERMODYNAMICS

    CENGAGE CHEMISTRY|Exercise Exercises (Subjective)|70 Videos
  • THERMODYNAMICS

    CENGAGE CHEMISTRY|Exercise Ex 6.3|27 Videos
  • STOICHIOMETRY

    CENGAGE CHEMISTRY|Exercise Archives Subjective|33 Videos

Similar Questions

Explore conceptually related problems

Calculate the standard free energy change for the formation of methane at 300K : C("graphite") +2H_(2) (g) rarr CH_(4)(g) The following data are given: Delta_(f)H^(Theta) (kJ mol^(-1)): CH_(4)(g) =- 74.81 Delta_(f)S^(Theta)(kJ mol^(-1)): C("graphite") = 5.70, H_(2)(g) = 130.7 CH_(4)(g) = 186.3

Calculate the standard Gibbs energy change for the formation of propane at 298 K: 3C("graphite") + 4H_(2)(g) to C_(3)H_(8)(g) Delta_(f)H^(@) for propane, C_(3)H_(8)(g) = -103.8 kJ mol^(-1) . Given : S_(m)^(0)[C_(3)H_(8)(g)] = 270.2 J K^(-1) "mol"^(-1) S_(m)^(@)("graphite") = 5.70 J K^(-1) "mol"^(-1) and S_(m)^(0)[H_(2)(g)] = 130.7 J K^(-1) "mol"^(-1) .

The standard molar entropy of H_(2)O(l) is 70 JK^(-1)mol^-1 . Standard molar entropy of H_(2)O(s) is

The enthalpy change for the reaction 2C("graphite")+3H_(2)(g)rarrC_(2)H_(6)(g) is called

Calculate the standard Gibbs enegry change for the combustion of alpha-D glucose at 300K . C_(6)H_(12)O_(6)(s) +6O_(2)(g) rarr 6CO_(2)(g) +6H_(2)O(l) Given the standard enthalpies of formation (kJ mol^(-1)) C_(6)H_(12)O_(6) =- 1274.5, CO_(2) =- 393.5, H_(2)O =- 285.8 . Entropies (J K mol^(-1)) C_(6)H_(12)O_(6) = 212.1, O_(1) = 205.0, CO_(2) =213, H_(2)O = 69.9

Calculate the standard enegry change for the reaction: OF_(2)(g) +H_(2)O(g) rarr O_(2)(g) +2HF(g) at 298K The standard enthalpies of formation of OF_(2)(g), H_(2)O(g) , and HF(g) are +20, -250 , and -270 kJ mol^(-1) , respectively.

Calculate the standard Gibbs free energy change from the free energies of formation data for the following reaction: C_(6)H_(6)(l) +(15)/(2)O_(2)(g) rarr 6CO_(2)(g) +3H_(2)O(g) Given that Delta_(f)G^(Theta) =[C_(6)H_(6)(l)] = 172.8 kJ mol^(-1) Delta_(f)G^(Theta)[CO_(2)(g)] =- 394.4 kJ mol^(-1) Delta_(f)G^(Theta) [H_(2)O(g)] =- 228.6 kJ mol^(-1)

The standard Gibb's energy change for the formation of propane. C_(3)H_(8) (g) at 298 K is [Delta_(f)H^(theta) for propane =-103.85 kJ" mole"^(-1), S^(theta)._(m)C_(3)H_(8)(g)=270.2J.K^(-1) mol^(-1), S^(theta)._(m)H_(2)(g)=130.68J.K^(-1) mol^(-1) . and S^(theta)._(m)C_("(graphite)")=5.74JK^(-1) mol^(-1)]