Home
Class 12
CHEMISTRY
In the radioacitve decay .(Z)X^(A) rar...

In the radioacitve decay
`._(Z)X^(A) rarr ._(z + 1)Y^(A) rarr ._(z - 1)^(A - 4) rarr ._(z - 1)Z^(*A - 4)`
The sequence of emission is
a. `alpha, beta, gamma` b. `gamma, alpha, beta` c. `beta, alpha, gamma` c. `beta, gamma, alpha`

Text Solution

AI Generated Solution

To solve the problem of identifying the sequence of emissions during the radioactive decay process described, we can break it down step-by-step: ### Step 1: Analyze the first decay The first decay is represented as: \[ _{Z}X^{A} \rightarrow _{Z+1}Y^{A} \] Here, the atomic number (Z) increases by 1, while the mass number (A) remains the same. This indicates that a beta particle (β) is emitted. In beta decay, a neutron is converted into a proton, resulting in an increase in the atomic number. ...
Promotional Banner

Topper's Solved these Questions

  • NUCLEAR CHEMISTRY

    CENGAGE CHEMISTRY|Exercise Solved Example|18 Videos
  • NUCLEAR CHEMISTRY

    CENGAGE CHEMISTRY|Exercise Ex6.1 Objective|15 Videos
  • NCERT BASED EXERCISE

    CENGAGE CHEMISTRY|Exercise Nuclear Chemistry (NCERT Exercise)|29 Videos
  • ORGANIC COMPOUNDS WITH FUNCTIONAL GROUP

    CENGAGE CHEMISTRY|Exercise Archives Analytical And Descriptive|24 Videos

Similar Questions

Explore conceptually related problems

sin (beta+ gamma- alpha) + sin (gamma+ alpha - beta) + sin (alpha + beta- gamma)- sin (alpha + beta + gamma)=

If alpha,beta,gamma are the cube roots of p, then for any x,y,z(x alpha+y beta+z gamma)/(x beta+y gamma+z alpha)=

If alpha, beta, gamma are the cube roots of 8 , then |(alpha,beta,gamma),(beta,gamma,alpha),(gamma,alpha,beta)|=

Evaluate the following: |[1,1,1],[alpha, beta, gamma],[beta gamma, gama alpha, alpha beta]|

If alpha,beta,gamma are cube roots of of p<0 then for any real x,y,z;(x alpha+y beta+z gamma)/(x beta+y gamma+z alpha)=

If alpha,beta,gamma are the cube roots of p then for any x,y and z(x alpha+y beta+z gamma)/(x beta+y gamma+z alpha) is

A line makes angles alpha, beta, gamma with X, Y, Z axes respectively. If alpha=beta and gamma=45^(@) , then alpha=

Prove that: tan(alpha-beta)+tan(beta-gamma)+tan (gamma-alpha) = tan(alpha-beta) tan (beta-gamma) tan (gamma-alpha) .

Show that |[1,alpha,alpha^2],[1,beta,beta^2],[1,gamma,gamma^2]|=(alpha-beta)(beta-gamma)(gamma-alpha)