Home
Class 10
MATHS
In the figure, /ABC=90^(@) and seg Bdbot...

In the figure, `/_ABC=90^(@)` and seg `Bdbot` side `AC`, `A-D-C` then by property of geometric mean. `BD^(2)=square xxsquare `. Fill in the boxes with the correct answer.

Promotional Banner

Topper's Solved these Questions

  • PYTHAGORAS THEOREM

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise 3.3 (2 mark each)|8 Videos
  • PYTHAGORAS THEOREM

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise 3.4 (3 mark each)|9 Videos
  • PYTHAGORAS THEOREM

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise Challenging Questions|5 Videos
  • PROBABILITY

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise ASSIGNEMENT 5.4|12 Videos
  • QUADRATIC EQUATION

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise CHALLENGIN QUESTIONS|2 Videos

Similar Questions

Explore conceptually related problems

In the figure, /_LMN=/_LKN=90^(@) seg MK bot seg LN . Complete the following activity to prove R is the midpoint of seg MK . Proof: In DeltaLMN , /_LMN=90^(@) seg MR bot hypotenuse LN :. by property of geometric mean, MR^(2)=squarexxRN In DeltaLKN , /_LKN=90^(@) seg KR bot hypotenuse LN :. by property of geometric mean, KR^(2)=LRxxsquare From (1) and (2) , we get MR^(2)=square :. MR=square . :. R is the midpoint of seg MK .

In DeltaABC , D is the midpoint of side BC . Fill in the boxes with correct answer AB^(2)+AC^(2)=square+square .

In the figure, seg AD bot side BC and B-D-C , then prove AB^(2)-BD^(2)=AC^(2)-CD^(2) .

In the figure, /_DFE=90^(@) , seg FG bot side DE , DG=8 , FG=12 then complete the following activity to find the length of seg DE . In DeltaDFE , /_DFE=90^(@) , seg FG bot hypotenuse DE :. by theorem of geometric mean, FG^(2)=squarexxEG :.12^(2)=squarexxEG EG=(12xx12)/(square) :.EG=square DE=DG+GE=8+square=square

In DeltaABC,/_BAC=90^@ and AB=AC.Seg AP _|_ side BC.B-P-C.Dis any points on side BC.Prove that 2AD^2=BD^2+CD^2