Home
Class 10
MATHS
Compare : (i) (sqrt21)/(sqrt27)and(3sqrt...

Compare : `(i) (sqrt21)/(sqrt27)and(3sqrt2)/(2sqrt6) (ii) (3sqrt6)/(4sqrt5) and (sqrt45)/(sqrt96).`

Text Solution

Verified by Experts

`(i) (sqrt21)/(sqrt27)gt(3sqrt2)/(2sqrt6) (ii) (3sqrt6)/(4sqrt5) gt (sqrt45)/(sqrt96).`
Promotional Banner

Topper's Solved these Questions

  • PRACTICE QUESTION BASED

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise LINEAR EQUATIONS IN TWO VARIABLES|11 Videos
  • PRACTICE QUESTION BASED

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise FINANCIAL PLANNING|11 Videos
  • PRACTICE QUESTION BASED

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise POLYNOMIALS|13 Videos
  • MODEL QUESTION PAPER

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise SOLVE THE FOLLOWING SUBQUESTIONS: (ANY ONE)|2 Videos
  • PRACTICE QUESTIONS BASED

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise SURFACE AREA AND VOLUME|17 Videos

Similar Questions

Explore conceptually related problems

(3sqrt(2))/(sqrt(6)-sqrt(3))+(2sqrt(3))/(sqrt(6)+2)-(4sqrt(3))/(sqrt(6)-sqrt(2))

(sqrt(2))/(sqrt(6)-sqrt(2))-(sqrt(3))/(sqrt(6)+sqrt(2))

Simplify by raationalising the denominator. (i) (7sqrt(3) - 5sqrt(2))/(sqrt(48) + sqrt(18)) (ii) (2sqrt(6) -sqrt(5))/(3sqrt(5)-2sqrt(6))

find the values of a and b in each of the following (i) (5+2sqrt3)/(7+4sqrt3) = a-6sqrt3 (ii) (3-sqrt5)/(3+2sqrt5)= asqrt5-(19/11) (iii) (sqrt2+sqrt3)/(3sqrt2-2sqrt3)=2-bsqrt6 (iv) (7+sqrt5)/(7-sqrt5)-(7-sqrt5)/(7+sqrt5)=a+(7/11)bsqrt5

(3sqrt(2))/(sqrt(3)+sqrt(6))-(4sqrt(3))/(sqrt(6)+sqrt(2))+(sqrt(6))/(sqrt(3)+sqrt(2))

Rationalise the denominator of the following (i) 2/(3sqrt3) , (ii) sqrt40/sqrt3 ,(iii) (3+sqrt2)/(4sqrt2) (iv) 16/(sqrt41-5) ,(v) (2+sqrt3)/(2-sqrt3) , (vi) sqrt6/(sqrt2+sqrt3) (vii) (sqrt3+sqrt2)/(sqrt3-sqrt2) ,(viii) (3sqrt5+sqrt3)/(sqrt5-sqrt3) , (ix) (4sqrt3+5sqrt2)/(sqrt48+sqrt18)

Simplify each of the following expressions: (i) (3+sqrt(3))(2+sqrt(2)) (ii) (3+sqrt(3))(3-sqrt(3)) (iii) (sqrt(5)-sqrt(2))(sqrt(5)+sqrt(2))

Simplify (i) (4+ sqrt(5))/(4-sqrt(5))+(4-sqrt(5))/(4+sqrt(5)) (ii) (1)/(sqrt(3) + sqrt(2)) - (2)/(sqrt(5)-sqrt(3)) -(2)/(sqrt(2) - sqrt(5)) (iii) (2+sqrt(3))/(2-sqrt(3)) + (2-sqrt(3))/(2+sqrt(3)) + (sqrt(3)-1)/(sqrt(3)+1) (iv) (2+sqrt(6))/(sqrt(2)+sqrt(3))+(6sqrt(2))/(sqrt(6)+sqrt(3)) -(8sqrt(3))/(sqrt(6)+sqrt(2))