Home
Class 11
PHYSICS
If for two vectors hat(A) and hat(B),sum...

If for two vectors `hat(A)` and `hat(B)`,sum `(vec(A)+vec(B))` is perpendicular to the diffrence `(vec(A)-vec(B))`. Find the ratio of their magnitude.

Text Solution

AI Generated Solution

To solve the problem where the sum of two vectors \( \vec{A} \) and \( \vec{B} \) is perpendicular to their difference, we can follow these steps: ### Step-by-Step Solution: 1. **Understanding the Condition**: We know that two vectors \( \vec{A} + \vec{B} \) and \( \vec{A} - \vec{B} \) are perpendicular. This means that their dot product is zero: \[ (\vec{A} + \vec{B}) \cdot (\vec{A} - \vec{B}) = 0 ...
Promotional Banner

Topper's Solved these Questions

  • VECTORS

    CENGAGE PHYSICS|Exercise Exercise Subjective|28 Videos
  • VECTORS

    CENGAGE PHYSICS|Exercise Exercise Single Correct|51 Videos
  • VECTORS

    CENGAGE PHYSICS|Exercise Exercise 3.1|19 Videos
  • TRAVELLING WAVES

    CENGAGE PHYSICS|Exercise Integer|9 Videos
  • WORK, POWER & ENERGY

    CENGAGE PHYSICS|Exercise Archives (integer)|4 Videos

Similar Questions

Explore conceptually related problems

There are two vector vec(A)=3hat(i)+hat(j) and vec(B)=hat(j)+2hat(k) . For these two vectors- (i) Find the component of vec(A) along vec(B) and perpendicular to vec(B) in vector form. (ii) If vec(A) & vec(B) are the adjacent sides of parallelogram then find the magnitude of its area. (iii) Find a unit vector which is perpendicular to both vec(A) & vec(B) .

Two vectors vec(A) and vec(B) lie in X-Y plane. The vector vec(B) is perpendicular to vector vec(A) . If vec(A) = hat(i) + hat(j) , then vec(B) may be :

(i) If vec(a)=hat(i)+2hat(j)-3hat(k) and vec(b)=3hat(i)-hat(j)+2hat(k) , show that (vec(a)+vec(b)) is perpendicular to (vec(A)-vec(b)) . (ii) If vec(a)=(5hat(i)-hat(j)-3 hat(k)) and vec(b)=(hat(i)+3hat(j)-5hat(k)) then show that (vec(a)+vec(b)) and (vec(a)-vec(b)) are orthogonal.

If vec(a)=hat(i)+2hat(j)-3hat(k) and vec(b)=3hat(i)-hat(j)+2hat(k) , then show that (vec(a)+vec(b)) is perpendicular to (vec(a)-vec(b)) .

If there are two vectors vec(A) and vec(B) such that vec(A)+vec(B)=hat(i)+2hat(j)+hat(k) and vec(A)-vec(B)=(hat(i)-vec(k)) , then choose the correct options.

For any two vectors vec a and hat b, show that (vec a+vec b)*(vec a-vec b)=0hat harr|vec a|=|vec b|

(a) Prove that the normal to the plane containing three points whose position vectors are vec(a), vec(b), vec(c ) lie in the direction of vec(b)xx vec(c )+vec(c )xx vec(a)+vec(a)xx vec(b) . (b) Find the unit vector perpendicular to the plane ABC, where the position vectors of A, B and C are : 2hat(i)-hat(j)+hat(k), hat(i)+hat(j)+2hat(k) and 2hat(i)+hat(k) respectively.

Let a vector vec(a) be coplanar with vectors vec(b) = 2hat(i) + hat(j) + hat(k) and vec(c) = hat(i) - hat(j) + hat(k) . If vec(a) is perpendicular to vec(d) = 3hat(i) + 2hat(j) + 6hat(k) , and |vec(a)| = sqrt(10) . Then a possible value of [[vec(a),vec(b),vec(c)]] + [[vec(a), vec(b), vec(d)]] + [[vec(a),vec(c),vec(d)]] is equal to :

The sum and difference of two vectors vec A and vec B are , vec A+vec B=2hat i+6hat j+hat k and vec A-vec B=4hat i+2hat j-11hat k . Find the magnitude of each vector and their scalar product vec A.vec B .

If vec(a) = (hat(i) - 2 hat(j)+ 3 hat(k)) and vec(b) = (2 hat(i) + 3 hat(j)- 5 hat(k)) then find (vec(a) xx vec(b)) and " verify that " (vec(a) xx vec(b)) is perpendicular to each one of vec(a) and vec(b) .