Home
Class 11
PHYSICS
The vector from origion to the point A a...

The vector from origion to the point A and B are `vec(A)=3hat(i)-6hat(j)+2hat(k)` and `vec(B)=2hat(i)+hat(j)-2hat(k)`,respectively. Find the area of the triangle OAB.

A

`(5sqrt(17))/2 sq.unit`

B

`(5sqrt(15))/3 sq.unit`

C

`(3sqrt(17))/2 sq.unit`

D

None

Text Solution

Verified by Experts

The correct Answer is:
A

Given `vec(OA)=vec(a)=3hat(i)-6hat(j)+2hat(k)` and `vec(OB)=vec(b)=2hat(i)+hat(j)-2hat(k)`
`:. (vec(a)xxvec(b))=|(hat(i), hat(j), hat(k)) ,(3,-6,2), (2 ,1 ,-2)|`
`=(12-2)hat(i)+(4+6)hat(j)+(3+12)hat(k)`
`=10hat(i)+10hat(j)+15hat(k)`
`rArr |vec(a)xxvec(b)|=sqrt(10^(2)+10^(2)+15^(2))=sqrt(425)=5sqrt(17)`
Area of `DeltaOAB=1/2|vec(a)xxvec(b)|=(5sqrt(17))/2 sq.unit`
Promotional Banner

Topper's Solved these Questions

  • VECTORS

    CENGAGE PHYSICS|Exercise Exercise Subjective|28 Videos
  • VECTORS

    CENGAGE PHYSICS|Exercise Exercise Single Correct|51 Videos
  • VECTORS

    CENGAGE PHYSICS|Exercise Exercise 3.1|19 Videos
  • TRAVELLING WAVES

    CENGAGE PHYSICS|Exercise Integer|9 Videos
  • WORK, POWER & ENERGY

    CENGAGE PHYSICS|Exercise Archives (integer)|4 Videos

Similar Questions

Explore conceptually related problems

The vectors from origin to the points A and B are vec(a)=3hat(i)-6hat(j)+2hat(k) and vec(b)= 2hat(i) +hat(j)-2hat(k) respectively. Find the area of : (i) the triangle OAB (ii) the parallelogram formed by vec(OA) and vec(OB) as adjacent sides.

The vectors from origin to the points A and B are vec(a)=3hat(i)-6hat(j)+2hat(k) and vec(b)= 2hat(i) +hat(j)-2hat(k) respectively. Find the area of : (i) the triangle OAB (ii) the parallelogram formed by (OA) and (OB) as adjacent sides.

The vectors from origin to the points A and B are vec(a)=2hat(i)-3hat(j)+2hat(k) and vec(b)=2hat(i)+3hat(j)+hat(k) respectively then the area of triangle OAB is

Vector vec(A)=hat(i)+hat(j)-2hat(k) and vec(B)=3hat(i)+3hat(j)-6hat(k) are :

Find the dot product of two vectors vec(A)=3hat(i)+2hat(j)-4hat(k) and vec(B)=2hat(i)-3hat(j)-6hat(k) .

vec(A)=(3hat(i)+2hat(j)-6hat(k)) and vec(B)=(hat(i)-2hat(j)+hat(k)) find the scalar product of vec(A) and vec(B) .

If vec(A)=2hat(i)+hat(j)+hat(k) and vec(B)=hat(i)+hat(j)+hat(k) are two vectors, then the unit vector is

If vec(a)=3hat(i)-2hat(j)+hat(k), vec(b)=2hat(i)-4 hat(j)-3 hat(k) , find |vec(a)-2 vec(b)| .

If vec(a)=4hat(i)-hat(j)+hat(k) and vec(b)=2hat(i)-2hat(j)+hat(k) , then find a unit vector parallel to the vector vec(a)+vec(b) .

vec(A)=hat(j)-2hat(i)+3hat(k) " , "vec(B)= hat(i)+2hat(j)+2hat(k) find vec(A).vec(B)