Home
Class 11
PHYSICS
If vec(A) is perpendicular to vec(B), th...

If `vec(A)` is perpendicular to `vec(B)`, then

A

`vec(A)xxvec(B)=0`

B

`vec(A).[vec(A)+vec(B)]=A^(2)`

C

`vec(A).vec(B)=AB`

D

`vec(A).[vec(A)+vec(B)]=A^(2)+AB`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the implications of the vectors \( \vec{A} \) and \( \vec{B} \) being perpendicular to each other. ### Step-by-Step Solution: 1. **Understanding Perpendicular Vectors**: - When two vectors \( \vec{A} \) and \( \vec{B} \) are perpendicular, their dot product is zero. This can be expressed mathematically as: \[ \vec{A} \cdot \vec{B} = 0 \] 2. **Evaluating the Options**: - We are given several options to determine which statement is true when \( \vec{A} \) is perpendicular to \( \vec{B} \). 3. **Option 1: \( \vec{A} \times \vec{B} = 0 \)**: - The cross product of two vectors is zero only when they are parallel or when one of the vectors is a null vector. Since \( \vec{A} \) and \( \vec{B} \) are perpendicular, this option is **incorrect**. 4. **Option 2: \( \vec{A} \cdot (\vec{A} + \vec{B}) = \vec{A}^2 \)**: - We can expand this using the distributive property of the dot product: \[ \vec{A} \cdot (\vec{A} + \vec{B}) = \vec{A} \cdot \vec{A} + \vec{A} \cdot \vec{B} \] - Since \( \vec{A} \cdot \vec{B} = 0 \), we have: \[ \vec{A} \cdot \vec{A} + 0 = \vec{A}^2 \] - Therefore, this option is **correct**. 5. **Option 3: \( \vec{A} \cdot \vec{B} = \vec{A} \vec{B} \)**: - This statement is incorrect because \( \vec{A} \cdot \vec{B} = 0 \) when \( \vec{A} \) is perpendicular to \( \vec{B} \). 6. **Option 4: \( \vec{A} \cdot (\vec{A} + \vec{B}) \neq \vec{A}^2 + \vec{A} \cdot \vec{B} \)**: - This statement is also incorrect because we have already shown that \( \vec{A} \cdot (\vec{A} + \vec{B}) = \vec{A}^2 \) and \( \vec{A} \cdot \vec{B} = 0 \). Thus, this option is **wrong**. ### Conclusion: The only correct statement when \( \vec{A} \) is perpendicular to \( \vec{B} \) is **Option 2**: \[ \vec{A} \cdot (\vec{A} + \vec{B}) = \vec{A}^2 \]

To solve the problem, we need to analyze the implications of the vectors \( \vec{A} \) and \( \vec{B} \) being perpendicular to each other. ### Step-by-Step Solution: 1. **Understanding Perpendicular Vectors**: - When two vectors \( \vec{A} \) and \( \vec{B} \) are perpendicular, their dot product is zero. This can be expressed mathematically as: \[ \vec{A} \cdot \vec{B} = 0 ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • VECTORS

    CENGAGE PHYSICS|Exercise Exercise Multiple Correct|5 Videos
  • VECTORS

    CENGAGE PHYSICS|Exercise Exercise Subjective|28 Videos
  • TRAVELLING WAVES

    CENGAGE PHYSICS|Exercise Integer|9 Videos
  • WORK, POWER & ENERGY

    CENGAGE PHYSICS|Exercise Archives (integer)|4 Videos

Similar Questions

Explore conceptually related problems

If vec A,vec B&vec A+vec B are three non-zero vector. Such that vec A+vec B is perpendicular to vec B then which of one is correct:

the resultant of two vectors vec(a) & vec(b) is perpendicular to vec(a) . If |vec(b)| = sqrt(2)|vec(a)| show that the resultant of 2vec(a) &vec(b) is perpendicular to vec(b) .

Knowledge Check

  • If vec(A),vec(B)& vec(A)+vec(B) are three non - zero vector. Such that vec(A)+vec(B) is perpendicular to vec(B) then which of one is correct :

    A
    `AgeB`
    B
    `Age(B)/(sqrt(2))`
    C
    `AgtB`
    D
    `Agt(B)/(sqrt(2))`
  • Given that vec(A)+vec(B)=vec(C ) and that vec(C ) is perpendicular to vec(A) Further if |vec(A)|=|vec(C )| , then what is the angle between vec(A) and vec(B)

    A
    `(pi)/4` radian
    B
    `(pi)/2` radian
    C
    `(3pi)/(4)` radian
    D
    `pi` radian
  • If vec(a)=vec(i)+2 hat(j)-3hat(k) and vec(b)=3hat(i)-hat(j)+lambda hat(k) and (vec(a)+vec(b)) is perpendicular to vec(a)-vec(b) , then what is the value of lambda ?

    A
    `-2` only
    B
    `pm2`
    C
    3 only
    D
    `pm3`
  • Similar Questions

    Explore conceptually related problems

    vec r xxvec a=vec b xxvec a;vec r xxvec b=vec a xxvec b;vec a!=vec 0;vec b!=vec 0;vec a!=lambdavec b, and vec a is not perpendicular to vec b, then find vec r in terms of vec a and vec b

    If vec a+vec b is perpendicular to vec b and vec a+vec 2b is perpendicular to vec a then

    Let vec a,vec b, and vec c are vectors such that |vec a|=3,|vec b|=4 and |vec c|=5, and (vec a+vec b) is perpendicular to vec c,(vec b+vec c) is perpendicular to vec a and (vec c+vec a) is perpendicular to vec b. Then find the value of |vec a+vec b+vec c|

    Given that vec(A)+vec(B)=vec(R) and vec(A)+2vec(B) is perpendicular to vec(A) . Then :-

    The resultant of vec(A) and vec(B) is perpendicular to vec(A) . What is angle between vec(A) and vec(B) ?