Home
Class 12
MATHS
Given p=3hat(i)+2hat(j)+4hat(k), a=hat(i...

Given `p=3hat(i)+2hat(j)+4hat(k), a=hat(i)+hat(j), b=hat(j)+hat(k), c=hat(i)+hat(k)` and `p=x a +y b +z c`, then x, y and z are respectively

A

`3/2, 1/2, 5/2`

B

`1/2, 3/2, 5/2`

C

`5/2, 3/2, 1/2`

D

`1/2, 5/2, 3/2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to express the vector \( p \) in terms of the vectors \( a \), \( b \), and \( c \). We are given: \[ p = 3\hat{i} + 2\hat{j} + 4\hat{k} \] \[ a = \hat{i} + \hat{j} \] \[ b = \hat{j} + \hat{k} \] \[ c = \hat{i} + \hat{k} \] We need to find \( x \), \( y \), and \( z \) such that: \[ p = x a + y b + z c \] ### Step 1: Substitute the vectors into the equation Substituting the expressions for \( a \), \( b \), and \( c \) into the equation gives: \[ p = x(\hat{i} + \hat{j}) + y(\hat{j} + \hat{k}) + z(\hat{i} + \hat{k}) \] Expanding this, we have: \[ p = x\hat{i} + x\hat{j} + y\hat{j} + y\hat{k} + z\hat{i} + z\hat{k} \] ### Step 2: Combine like terms Now, combine the like terms: \[ p = (x + z)\hat{i} + (x + y)\hat{j} + (y + z)\hat{k} \] ### Step 3: Set the coefficients equal Since \( p = 3\hat{i} + 2\hat{j} + 4\hat{k} \), we can equate the coefficients of \( \hat{i} \), \( \hat{j} \), and \( \hat{k} \): 1. \( x + z = 3 \) (1) 2. \( x + y = 2 \) (2) 3. \( y + z = 4 \) (3) ### Step 4: Solve the system of equations Now we have a system of three equations. We can solve these equations step by step. **Adding equations (1), (2), and (3):** \[ (x + z) + (x + y) + (y + z) = 3 + 2 + 4 \] This simplifies to: \[ 2x + 2y + 2z = 9 \] Dividing through by 2 gives: \[ x + y + z = \frac{9}{2} \quad (4) \] ### Step 5: Substitute and solve for \( y \) Now, we can use equation (1) to express \( z \) in terms of \( x \): From (1): \[ z = 3 - x \quad (5) \] Substituting (5) into (4): \[ x + y + (3 - x) = \frac{9}{2} \] This simplifies to: \[ y + 3 = \frac{9}{2} \] Thus, \[ y = \frac{9}{2} - 3 = \frac{9}{2} - \frac{6}{2} = \frac{3}{2} \] ### Step 6: Substitute \( y \) back to find \( x \) and \( z \) Now substitute \( y = \frac{3}{2} \) into equation (2): \[ x + \frac{3}{2} = 2 \] This gives: \[ x = 2 - \frac{3}{2} = \frac{4}{2} - \frac{3}{2} = \frac{1}{2} \] Now substitute \( x = \frac{1}{2} \) into equation (5) to find \( z \): \[ z = 3 - \frac{1}{2} = \frac{6}{2} - \frac{1}{2} = \frac{5}{2} \] ### Final Values Thus, we have: \[ x = \frac{1}{2}, \quad y = \frac{3}{2}, \quad z = \frac{5}{2} \] ### Conclusion The values of \( x \), \( y \), and \( z \) are: \[ \boxed{\left( \frac{1}{2}, \frac{3}{2}, \frac{5}{2} \right)} \]

To solve the problem, we need to express the vector \( p \) in terms of the vectors \( a \), \( b \), and \( c \). We are given: \[ p = 3\hat{i} + 2\hat{j} + 4\hat{k} \] \[ a = \hat{i} + \hat{j} \] ...
Promotional Banner

Topper's Solved these Questions

  • VECTORS

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise (VECTORS ) Exercise 2 ( Topical problems )|88 Videos
  • TRIGONOMETRIC FUNCTIONS OF COMPOUND ANGLES

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise Exercise 2 (MISCELLANEOUS PROBLEMS)|20 Videos

Similar Questions

Explore conceptually related problems

If a=hat(i)+hat(j)-2hat(k), b=2hat(i)-hat(j)+hat(k) and c=3hat(i)-hat(k) and c=ma+nb , then m+n is equal to

A vector(d) is equally inclined to three vectors a=hat(i)-hat(j)+hat(k), b=2hat(i)+hat(j) and c=3hat(j)-2hat(k) . Let x, y, z be three vectors in the plane a, b:b, c:c, a respectively, then

If a=hat(i)+2hat(j)-2hat(k), b=2hat(i)-hat(j)+hat(k) and c=hat(i)+3hat(j)-hat(k) , then atimes(btimesc) is equal to

The position vectors of three points A,B anc C (-4hat(i) +2hat(j) -3hat(k)) (hat(i) +3hat(j) -2hat(k)) "and " (-9hat(i) +hat(j) -4hat(k)) respectively . Show that the points A,B and C are collinear.

If position vectors of four points A, B, C, D are hat(i)+hat(j)+hat(k), 2hat(i)+3hat(j), 3hat(i)+5hat(j)-2hat(k), -hat(j)+hat(k) respectively, then overline(AB) and overline(CD) are related as

If the vectors ahat(i)+hat(j)+hat(k), hat(i)+bhat(j)+hat(k), hat(i)+hat(j)+chat(k) , where a, b, c are coplanar, then a+b+c-abc=

Find the altitude of a parallelopiped whose three conterminous edges are verctors A=hat(i)+hat(j)+hat(k), B=2hat(i)+4hat(j)-hat(k) and C=hat(i)+hat(j)+3hat(k) with A and B as the sides of the base of the parallelopiped.

If a=2hat(i)+3hat(j)-hat(k), b=-hat(i)+2hat(j)-4hat(k), c=hat(i)+hat(j)+hat(k) , then find the value of (atimesb)*(atimesc) .

MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS-VECTORS -( MHT CET Corner)
  1. The volume of a parallelopiped whose coterminous edges are 2veca , 2ve...

    Text Solution

    |

  2. The position vectors of vertices of a Delta ABC are 4hat(i)-2hat(j), h...

    Text Solution

    |

  3. Given p=3hat(i)+2hat(j)+4hat(k), a=hat(i)+hat(j), b=hat(j)+hat(k), c=h...

    Text Solution

    |

  4. Volume of the parallelopiped having vertices at O-=(0,0,0) , A-=(2,-2...

    Text Solution

    |

  5. If 2veca+ 3vecb-5 vecc=vec0, then ratio in which vecc divides vec...

    Text Solution

    |

  6. If the constant forces 2hati-5hatj+6hatk and -hati+2hatj-hatk act on a...

    Text Solution

    |

  7. If the vectors hat(i)-3hat(j)+2hat(k), -hat(i)+2hat(j) represent the d...

    Text Solution

    |

  8. If |vec(a)|=2,|vec(b)|=3andvec(a),vec(b) are mutually perpendicular, t...

    Text Solution

    |

  9. a xx [axx(axxb)] is equal to

    Text Solution

    |

  10. If the vectors a + lamda b + 3c, -2a + 3b - 4c and a - 3b + 5c are cop...

    Text Solution

    |

  11. If the vectors a=hat(i)+a hat(j)+a^(2) hat(k), b=hat(i)+b hat(j)+b^(2)...

    Text Solution

    |

  12. Let vec a=2 hat i- hat j+ hat k , vec b= hat i+2 hat j= hat ka n d ve...

    Text Solution

    |

  13. (a.(b xx c))/(b.(c xx a))+(b.(a x b))/(a. (b xx c)) is equal to

    Text Solution

    |

  14. If |a|=|b|=1 and |a+b|=sqrt(3), then the value of (3a-4b)(2b+5b) is

    Text Solution

    |

  15. If a is perpedicular to b and c|a| = 2, |b| = 3 |c| = 4 and the angl...

    Text Solution

    |

  16. If bar a,bar b and bar c are perpendicular ,bar c+bar a, bar b+bar c ...

    Text Solution

    |

  17. If vector hat(i)+hat(j)+hat(k), hat(i)-hat(j)+hat(k) and 2hat(i)+3hat(...

    Text Solution

    |

  18. Given a bot b, |a|=1 and if (a+3b).(2a-b)=-10, then |b| is equal to

    Text Solution

    |

  19. [(a+b,b+c,c+a)]=[(a,b,c)], then

    Text Solution

    |

  20. Area of rhombus is ......., where diagonals are a=2hat(i)-3hat(j)+5hat...

    Text Solution

    |