Home
Class 12
MATHS
int(-1)^(1) (dx) / (x^(2)+2x+5) is equa...

` int_(-1)^(1) (dx) / (x^(2)+2x+5)` is equal to

A

`pi/2`

B

`pi/4`

C

`pi/8`

D

`pi/3`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \[ I = \int_{-1}^{1} \frac{dx}{x^2 + 2x + 5}, \] we will follow these steps: ### Step 1: Complete the square in the denominator The expression \(x^2 + 2x + 5\) can be rewritten by completing the square. \[ x^2 + 2x + 5 = (x^2 + 2x + 1) + 4 = (x + 1)^2 + 4. \] ### Step 2: Rewrite the integral Now we can rewrite the integral \(I\) as: \[ I = \int_{-1}^{1} \frac{dx}{(x + 1)^2 + 4}. \] ### Step 3: Use substitution Next, we will use the substitution \(x + 1 = 2 \tan \theta\). This implies: \[ dx = 2 \sec^2 \theta \, d\theta. \] We also need to change the limits of integration. When \(x = -1\): \[ x + 1 = 0 \implies \tan \theta = 0 \implies \theta = 0. \] When \(x = 1\): \[ x + 1 = 2 \implies \tan \theta = 1 \implies \theta = \frac{\pi}{4}. \] ### Step 4: Substitute and change limits Now substituting into the integral, we have: \[ I = \int_{0}^{\frac{\pi}{4}} \frac{2 \sec^2 \theta \, d\theta}{(2 \tan \theta)^2 + 4}. \] This simplifies to: \[ I = \int_{0}^{\frac{\pi}{4}} \frac{2 \sec^2 \theta \, d\theta}{4 \tan^2 \theta + 4} = \int_{0}^{\frac{\pi}{4}} \frac{2 \sec^2 \theta \, d\theta}{4(\tan^2 \theta + 1)}. \] ### Step 5: Simplify the integral Since \(1 + \tan^2 \theta = \sec^2 \theta\), we can simplify further: \[ I = \int_{0}^{\frac{\pi}{4}} \frac{2 \sec^2 \theta \, d\theta}{4 \sec^2 \theta} = \int_{0}^{\frac{\pi}{4}} \frac{1}{2} \, d\theta. \] ### Step 6: Evaluate the integral Now we can evaluate the integral: \[ I = \frac{1}{2} \int_{0}^{\frac{\pi}{4}} d\theta = \frac{1}{2} \left[ \theta \right]_{0}^{\frac{\pi}{4}} = \frac{1}{2} \left( \frac{\pi}{4} - 0 \right) = \frac{\pi}{8}. \] ### Final Answer Thus, the value of the integral is: \[ I = \frac{\pi}{8}. \] ---

To evaluate the integral \[ I = \int_{-1}^{1} \frac{dx}{x^2 + 2x + 5}, \] we will follow these steps: ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise PRACTICE EXERCISE (Exercise 2) (MISCELLANEOUS PROBLEMS)|76 Videos
  • DEFINITE INTEGRALS

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|22 Videos
  • CONTINUITY

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|16 Videos
  • DIFFERENTIAL EQUATION

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|27 Videos

Similar Questions

Explore conceptually related problems

int_(-1)^(0)(dx)/(x^(2)+2x+2) is equal to

int_(0)^(1)(dx)/(1+x+x^(2)) is equal to

Knowledge Check

  • int_(-1)^(0) (dx)/(x^(2) + 2x + 2 ) is equal to

    A
    0
    B
    `pi//4`
    C
    `pi//2`
    D
    `-pi/4`
  • The integral int_(-1)^(1) (|x+2|)/(x+2)dx is equal to

    A
    1
    B
    2
    C
    0
    D
    `-1`
  • The integral int_(-1)^(2) (|x+2|)/(x+2)dx is equal to

    A
    1
    B
    3
    C
    0
    D
    `-1`
  • Similar Questions

    Explore conceptually related problems

    int_(1//2)^(1)(dx)/( sqrt(3x^(2) + 2x -1) ) is equal to (pi=3.14)

    int(dx)/(x(x^(2)+1)) is equal to

    int_(1)^(2) (dx)/(2x+5)=

    int_(0)^(1) (x^(2))/(1+x^(2))dx is equal to

    int_(0)^(x) (dx)/(1-2a cos x+a^(2)) is equal to