Home
Class 12
MATHS
int(-1)^(2)f(x)dx " where " f(x) = |x+1|...

` int_(-1)^(2)f(x)dx " where " f(x) = |x+1| +|x|+ |x-1|` is equal to

A

`7/2`

B

`9/2`

C

`13/2`

D

`19/2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int_{-1}^{2} f(x) \, dx \) where \( f(x) = |x+1| + |x| + |x-1| \), we will first analyze the function \( f(x) \) by breaking it down into intervals based on the points where the expressions inside the absolute values change sign. ### Step 1: Identify the critical points The critical points for \( f(x) \) occur when the expressions inside the absolute values are zero: - \( x + 1 = 0 \) → \( x = -1 \) - \( x = 0 \) - \( x - 1 = 0 \) → \( x = 1 \) Thus, we will consider the intervals: \( [-1, 0] \), \( [0, 1] \), and \( [1, 2] \). ### Step 2: Define \( f(x) \) in each interval 1. **Interval \( [-1, 0] \)**: - \( x + 1 \geq 0 \) → \( |x + 1| = x + 1 \) - \( x < 0 \) → \( |x| = -x \) - \( x - 1 < 0 \) → \( |x - 1| = -x + 1 \) Therefore, in this interval: \[ f(x) = (x + 1) + (-x) + (-x + 1) = 2 - x \] 2. **Interval \( [0, 1] \)**: - \( x + 1 \geq 0 \) → \( |x + 1| = x + 1 \) - \( x \geq 0 \) → \( |x| = x \) - \( x - 1 < 0 \) → \( |x - 1| = -x + 1 \) Therefore, in this interval: \[ f(x) = (x + 1) + x + (-x + 1) = 2 + x \] 3. **Interval \( [1, 2] \)**: - \( x + 1 \geq 0 \) → \( |x + 1| = x + 1 \) - \( x \geq 0 \) → \( |x| = x \) - \( x - 1 \geq 0 \) → \( |x - 1| = x - 1 \) Therefore, in this interval: \[ f(x) = (x + 1) + x + (x - 1) = 3x \] ### Step 3: Set up the integral Now we can express the integral \( I \) as the sum of integrals over the three intervals: \[ I = \int_{-1}^{0} (2 - x) \, dx + \int_{0}^{1} (2 + x) \, dx + \int_{1}^{2} (3x) \, dx \] ### Step 4: Calculate each integral 1. **First integral**: \[ \int_{-1}^{0} (2 - x) \, dx = \left[ 2x - \frac{x^2}{2} \right]_{-1}^{0} = \left( 0 - 0 \right) - \left( -2 - \frac{1}{2} \right) = 2 + \frac{1}{2} = \frac{5}{2} \] 2. **Second integral**: \[ \int_{0}^{1} (2 + x) \, dx = \left[ 2x + \frac{x^2}{2} \right]_{0}^{1} = \left( 2 + \frac{1}{2} \right) - (0) = 2 + \frac{1}{2} = \frac{5}{2} \] 3. **Third integral**: \[ \int_{1}^{2} (3x) \, dx = \left[ \frac{3x^2}{2} \right]_{1}^{2} = \left( \frac{3(2^2)}{2} - \frac{3(1^2)}{2} \right) = \left( \frac{12}{2} - \frac{3}{2} \right) = 6 - \frac{3}{2} = \frac{12}{2} - \frac{3}{2} = \frac{9}{2} \] ### Step 5: Combine the results Now, we add the results of the three integrals: \[ I = \frac{5}{2} + \frac{5}{2} + \frac{9}{2} = \frac{19}{2} \] ### Final Answer Thus, the value of the integral \( \int_{-1}^{2} f(x) \, dx \) is: \[ \boxed{\frac{19}{2}} \]

To solve the integral \( \int_{-1}^{2} f(x) \, dx \) where \( f(x) = |x+1| + |x| + |x-1| \), we will first analyze the function \( f(x) \) by breaking it down into intervals based on the points where the expressions inside the absolute values change sign. ### Step 1: Identify the critical points The critical points for \( f(x) \) occur when the expressions inside the absolute values are zero: - \( x + 1 = 0 \) → \( x = -1 \) - \( x = 0 \) - \( x - 1 = 0 \) → \( x = 1 \) ...
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise PRACTICE EXERCISE (Exercise 2) (MISCELLANEOUS PROBLEMS)|76 Videos
  • DEFINITE INTEGRALS

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|22 Videos
  • CONTINUITY

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|16 Videos
  • DIFFERENTIAL EQUATION

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|27 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(3)f(x)dx, where f(x)=|x|+|x-1|+|x-2|

Evaluate int_1^4 f(x)dx , where f(x)=|x-1|+|x-2|+|x-3|

If f'(x) = f(x)+ int _(0)^(1)f (x) dx and given f (0) =1, then int f (x) dx is equal to :

I=int_((pi)/(2))^((pi)/(2))max(sin^(-1)(sin x),f(x)),dx where f(x)={1,x>0 and -1,x<0 then I equal to

int_(0) ^(1) x f ''(x) dx, where f (x) = cos (tan ^(-1)x)

The value of int_1^2 {f(g(x))}^(-1)f'(g(x))g'(x) dx , where g(1)=g(2), is equal to

The area of int_(-10)^(10)f(x)dx, where f(x)=min{x-[x],-x-[-x]}, where [1 is G.L.E., is

A continous function f(x) is such that f(3x)=2f(x), AA x in R . If int_(0)^(1)f(x)dx=1, then int_(1)^(3)f(x)dx is equal to

MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS-DEFINITE INTEGRALS-MHT CET Corner
  1. int(-1)^(2)f(x)dx " where " f(x) = |x+1| +|x|+ |x-1| is equal to

    Text Solution

    |

  2. int (-pi/2)^(pi/2)log((2-sin x)/(2+sinx))dx is equal to

    Text Solution

    |

  3. int (0)^(pi //2)((root(n)(secx))/(root(n)(secx)+root(n)("cosec"x)))dx=

    Text Solution

    |

  4. The value of int 0 ^ 1 x ^ 2 ( 1 - x ^ 2 ) ^ (3//2 ) dx ...

    Text Solution

    |

  5. The value of int0^oox/((1+x)(x^2+1))dx is

    Text Solution

    |

  6. Evaluate int(0)^(pi)(x dx)/(1+cos alpha sin x),where 0lt alpha lt pi.

    Text Solution

    |

  7. int(pi//2)^(pi//2)(cosx)/(1+e^(x))dx is equal to

    Text Solution

    |

  8. int(0)^(pi//2)(1)/((1+tanx))dx=?

    Text Solution

    |

  9. If int(0)^(1) tan^(-1) x dx = p , then the value of int(0)^(1) tan^(-1...

    Text Solution

    |

  10. The value of int (0)^(pi//2) log ("cosec "x) dx is

    Text Solution

    |

  11. Which of the following is true ?

    Text Solution

    |

  12. int(0)^(5) 1/((x-1)(x-2))dx is equal to

    Text Solution

    |

  13. int(pi/4)^(pi/2) e^x(logsinx+cotx)dx

    Text Solution

    |

  14. The value of int(0)^(pi) x sin^(3) x dx is

    Text Solution

    |

  15. The value of int0 ^(pi/2) (cos3x+1)/(cosx - 1) dx is equal to

    Text Solution

    |

  16. The value of underset(0)overset(1)int tan^(-1) ((2x-1)/(1+x-x^(2)))dx ...

    Text Solution

    |

  17. If f is a continous function, then

    Text Solution

    |

  18. The value of int(-pi)^(pi) sin^(3) x cos^(2) x dx is equal to

    Text Solution

    |

  19. The value of int(-1)^(1) log ((x-1)/(x+1))dx is

    Text Solution

    |

  20. int(pi//6)^(pi//3)(1)/((1+sqrt(tanx)))dx=(pi)/(12)

    Text Solution

    |

  21. int (1)^(2)e^(x) (1/x - 1/(x^(2)))dx is qual to

    Text Solution

    |