Home
Class 12
MATHS
int(0)^(pi//2) (cos^(5)x)/(sin^(5)x+cos^...

` int_(0)^(pi//2) (cos^(5)x)/(sin^(5)x+cos^(5)x)dx` is equal to

A

0

B

`pi/3`

C

`pi/4`

D

`pi/2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ I = \int_{0}^{\frac{\pi}{2}} \frac{\cos^5 x}{\sin^5 x + \cos^5 x} \, dx, \] we can use the property of definite integrals which states that \[ \int_{a}^{b} f(x) \, dx = \int_{a}^{b} f(a + b - x) \, dx. \] In our case, \( a = 0 \) and \( b = \frac{\pi}{2} \). Thus, we can write: \[ I = \int_{0}^{\frac{\pi}{2}} \frac{\cos^5\left(\frac{\pi}{2} - x\right)}{\sin^5\left(\frac{\pi}{2} - x\right) + \cos^5\left(\frac{\pi}{2} - x\right)} \, dx. \] Using the trigonometric identities \( \cos\left(\frac{\pi}{2} - x\right) = \sin x \) and \( \sin\left(\frac{\pi}{2} - x\right) = \cos x \), we can rewrite the integral: \[ I = \int_{0}^{\frac{\pi}{2}} \frac{\sin^5 x}{\cos^5 x + \sin^5 x} \, dx. \] Now we have two expressions for \( I \): 1. \( I = \int_{0}^{\frac{\pi}{2}} \frac{\cos^5 x}{\sin^5 x + \cos^5 x} \, dx \) 2. \( I = \int_{0}^{\frac{\pi}{2}} \frac{\sin^5 x}{\sin^5 x + \cos^5 x} \, dx \) Adding these two equations gives: \[ 2I = \int_{0}^{\frac{\pi}{2}} \left( \frac{\cos^5 x}{\sin^5 x + \cos^5 x} + \frac{\sin^5 x}{\sin^5 x + \cos^5 x} \right) \, dx. \] The denominators are the same, so we can combine the numerators: \[ 2I = \int_{0}^{\frac{\pi}{2}} \frac{\cos^5 x + \sin^5 x}{\sin^5 x + \cos^5 x} \, dx = \int_{0}^{\frac{\pi}{2}} 1 \, dx. \] Now we can evaluate the integral: \[ 2I = \left[ x \right]_{0}^{\frac{\pi}{2}} = \frac{\pi}{2} - 0 = \frac{\pi}{2}. \] Thus, we find: \[ I = \frac{\pi}{4}. \] Therefore, the value of the integral is \[ \int_{0}^{\frac{\pi}{2}} \frac{\cos^5 x}{\sin^5 x + \cos^5 x} \, dx = \frac{\pi}{4}. \]

To solve the integral \[ I = \int_{0}^{\frac{\pi}{2}} \frac{\cos^5 x}{\sin^5 x + \cos^5 x} \, dx, \] we can use the property of definite integrals which states that ...
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise PRACTICE EXERCISE (Exercise 2) (MISCELLANEOUS PROBLEMS)|76 Videos
  • DEFINITE INTEGRALS

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|22 Videos
  • CONTINUITY

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|16 Videos
  • DIFFERENTIAL EQUATION

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|27 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(pi/2)(cos^(5)x dx)/(sin^(5)x+cos^(5)x)

int_(0)^((pi)/(2))(cos^(5/2)x)/(sin^(5/2)x+cos^(5/2)x)dx

int_(0)^(pi//2) (dx)/(4sin^(2) x + 5 cos^(2)x)

int_(0)^(2 pi)cos^(5)x*dx

Prove that : int_(0)^(pi//2) (cos^(5))/(sin^(5) x+cos^(5) x)dx= (pi)/(4)

Evaluate : int_(0)^( pi/2)(sin^(5)x)/(sin^(5)x+cos^(5)x)dx

int_0^(pi/2) cos^5x/(sin^5x+cos^5x)dx

I=int_(0)^(2 pi)cos^(5)x*dx

int_(0)^(pi//2) cos^(5) x " " dx=

MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS-DEFINITE INTEGRALS-MHT CET Corner
  1. int(0)^(pi//2) (cos^(5)x)/(sin^(5)x+cos^(5)x)dx is equal to

    Text Solution

    |

  2. int (-pi/2)^(pi/2)log((2-sin x)/(2+sinx))dx is equal to

    Text Solution

    |

  3. int (0)^(pi //2)((root(n)(secx))/(root(n)(secx)+root(n)("cosec"x)))dx=

    Text Solution

    |

  4. The value of int 0 ^ 1 x ^ 2 ( 1 - x ^ 2 ) ^ (3//2 ) dx ...

    Text Solution

    |

  5. The value of int0^oox/((1+x)(x^2+1))dx is

    Text Solution

    |

  6. Evaluate int(0)^(pi)(x dx)/(1+cos alpha sin x),where 0lt alpha lt pi.

    Text Solution

    |

  7. int(pi//2)^(pi//2)(cosx)/(1+e^(x))dx is equal to

    Text Solution

    |

  8. int(0)^(pi//2)(1)/((1+tanx))dx=?

    Text Solution

    |

  9. If int(0)^(1) tan^(-1) x dx = p , then the value of int(0)^(1) tan^(-1...

    Text Solution

    |

  10. The value of int (0)^(pi//2) log ("cosec "x) dx is

    Text Solution

    |

  11. Which of the following is true ?

    Text Solution

    |

  12. int(0)^(5) 1/((x-1)(x-2))dx is equal to

    Text Solution

    |

  13. int(pi/4)^(pi/2) e^x(logsinx+cotx)dx

    Text Solution

    |

  14. The value of int(0)^(pi) x sin^(3) x dx is

    Text Solution

    |

  15. The value of int0 ^(pi/2) (cos3x+1)/(cosx - 1) dx is equal to

    Text Solution

    |

  16. The value of underset(0)overset(1)int tan^(-1) ((2x-1)/(1+x-x^(2)))dx ...

    Text Solution

    |

  17. If f is a continous function, then

    Text Solution

    |

  18. The value of int(-pi)^(pi) sin^(3) x cos^(2) x dx is equal to

    Text Solution

    |

  19. The value of int(-1)^(1) log ((x-1)/(x+1))dx is

    Text Solution

    |

  20. int(pi//6)^(pi//3)(1)/((1+sqrt(tanx)))dx=(pi)/(12)

    Text Solution

    |

  21. int (1)^(2)e^(x) (1/x - 1/(x^(2)))dx is qual to

    Text Solution

    |