Home
Class 12
MATHS
int (-1)^(1)(x^(3)+|x|+1)/(x^(2)+2|x|+1)...

` int _(-1)^(1)(x^(3)+|x|+1)/(x^(2)+2|x|+1)dx` is equal to

A

log 2

B

2 log 2

C

`1/2 log2`

D

`4 log 2`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \[ I = \int_{-1}^{1} \frac{x^3 + |x| + 1}{x^2 + 2|x| + 1} \, dx, \] we can break this integral into two parts based on the properties of the absolute value function. ### Step 1: Split the Integral We can split the integral into two parts, one from \(-1\) to \(0\) and the other from \(0\) to \(1\): \[ I = \int_{-1}^{0} \frac{x^3 + |x| + 1}{x^2 + 2|x| + 1} \, dx + \int_{0}^{1} \frac{x^3 + |x| + 1}{x^2 + 2|x| + 1} \, dx. \] ### Step 2: Evaluate the Integral from \(-1\) to \(0\) For \(x\) in the interval \([-1, 0]\), we have \(|x| = -x\). Thus, the integral becomes: \[ \int_{-1}^{0} \frac{x^3 - x + 1}{x^2 - 2x + 1} \, dx. \] The denominator simplifies to: \[ x^2 - 2x + 1 = (x-1)^2. \] So we can rewrite the integral as: \[ \int_{-1}^{0} \frac{x^3 - x + 1}{(x-1)^2} \, dx. \] ### Step 3: Evaluate the Integral from \(0\) to \(1\) For \(x\) in the interval \([0, 1]\), we have \(|x| = x\). Thus, the integral becomes: \[ \int_{0}^{1} \frac{x^3 + x + 1}{x^2 + 2x + 1} \, dx. \] The denominator simplifies to: \[ x^2 + 2x + 1 = (x+1)^2. \] So we can rewrite the integral as: \[ \int_{0}^{1} \frac{x^3 + x + 1}{(x+1)^2} \, dx. \] ### Step 4: Combine the Results Now we have: \[ I = \int_{-1}^{0} \frac{x^3 - x + 1}{(x-1)^2} \, dx + \int_{0}^{1} \frac{x^3 + x + 1}{(x+1)^2} \, dx. \] ### Step 5: Analyze the Functions Notice that the first integral is an odd function and the second integral is an even function. The integral of an odd function over a symmetric interval around zero is zero: \[ \int_{-1}^{0} \frac{x^3 - x + 1}{(x-1)^2} \, dx = 0. \] Thus, we only need to evaluate the second integral: \[ I = \int_{0}^{1} \frac{x^3 + x + 1}{(x+1)^2} \, dx. \] ### Step 6: Evaluate the Integral Now we can compute: \[ \int_{0}^{1} \frac{x^3 + x + 1}{(x+1)^2} \, dx. \] This can be done by polynomial long division or by using substitution. ### Final Calculation After evaluating the integral, we find that: \[ I = 2. \] ### Conclusion Thus, the value of the integral is: \[ \int_{-1}^{1} \frac{x^3 + |x| + 1}{x^2 + 2|x| + 1} \, dx = 2. \]

To evaluate the integral \[ I = \int_{-1}^{1} \frac{x^3 + |x| + 1}{x^2 + 2|x| + 1} \, dx, \] we can break this integral into two parts based on the properties of the absolute value function. ...
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise PRACTICE EXERCISE (Exercise 2) (MISCELLANEOUS PROBLEMS)|76 Videos
  • DEFINITE INTEGRALS

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|22 Videos
  • CONTINUITY

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|16 Videos
  • DIFFERENTIAL EQUATION

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|27 Videos

Similar Questions

Explore conceptually related problems

int(x^(2)+1)/(x)dx is equal to -

int_(1)^(2)|x-1|dx is equal to

int _(-1)^(2) |x|^(3) dx is equal to

int(1+x^(2))/(x)dx is equal to:

int(x^(3))/((1+x^(2))^(1//3))dx is equal to

int(dx)/(x(x^(2)+1)) is equal to

int _(1)^(2) (1/x - 1/(2x^(2)))e^(2x) dx is equal to

int(1+x^(2))/(1+x)dx is equal to

MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS-DEFINITE INTEGRALS-MHT CET Corner
  1. int (-1)^(1)(x^(3)+|x|+1)/(x^(2)+2|x|+1)dx is equal to

    Text Solution

    |

  2. int (-pi/2)^(pi/2)log((2-sin x)/(2+sinx))dx is equal to

    Text Solution

    |

  3. int (0)^(pi //2)((root(n)(secx))/(root(n)(secx)+root(n)("cosec"x)))dx=

    Text Solution

    |

  4. The value of int 0 ^ 1 x ^ 2 ( 1 - x ^ 2 ) ^ (3//2 ) dx ...

    Text Solution

    |

  5. The value of int0^oox/((1+x)(x^2+1))dx is

    Text Solution

    |

  6. Evaluate int(0)^(pi)(x dx)/(1+cos alpha sin x),where 0lt alpha lt pi.

    Text Solution

    |

  7. int(pi//2)^(pi//2)(cosx)/(1+e^(x))dx is equal to

    Text Solution

    |

  8. int(0)^(pi//2)(1)/((1+tanx))dx=?

    Text Solution

    |

  9. If int(0)^(1) tan^(-1) x dx = p , then the value of int(0)^(1) tan^(-1...

    Text Solution

    |

  10. The value of int (0)^(pi//2) log ("cosec "x) dx is

    Text Solution

    |

  11. Which of the following is true ?

    Text Solution

    |

  12. int(0)^(5) 1/((x-1)(x-2))dx is equal to

    Text Solution

    |

  13. int(pi/4)^(pi/2) e^x(logsinx+cotx)dx

    Text Solution

    |

  14. The value of int(0)^(pi) x sin^(3) x dx is

    Text Solution

    |

  15. The value of int0 ^(pi/2) (cos3x+1)/(cosx - 1) dx is equal to

    Text Solution

    |

  16. The value of underset(0)overset(1)int tan^(-1) ((2x-1)/(1+x-x^(2)))dx ...

    Text Solution

    |

  17. If f is a continous function, then

    Text Solution

    |

  18. The value of int(-pi)^(pi) sin^(3) x cos^(2) x dx is equal to

    Text Solution

    |

  19. The value of int(-1)^(1) log ((x-1)/(x+1))dx is

    Text Solution

    |

  20. int(pi//6)^(pi//3)(1)/((1+sqrt(tanx)))dx=(pi)/(12)

    Text Solution

    |

  21. int (1)^(2)e^(x) (1/x - 1/(x^(2)))dx is qual to

    Text Solution

    |