Home
Class 12
MATHS
int (a)^(b) (|x|)/x dx , a lt 0 lt b, i...

` int _(a)^(b) (|x|)/x dx , a lt 0 lt b,` is equal to

A

`|b|-|a|`

B

`|b|+|a|`

C

`|a-b|`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int_{a}^{b} \frac{|x|}{x} \, dx \) where \( a < 0 < b \), we will break the integral into two parts based on the definition of the absolute value function. ### Step-by-Step Solution: 1. **Understanding the Absolute Value Function**: - The absolute value function \( |x| \) is defined as: \[ |x| = \begin{cases} x & \text{if } x \geq 0 \\ -x & \text{if } x < 0 \end{cases} \] 2. **Breaking the Integral**: - Since \( a < 0 \) and \( b > 0 \), we can split the integral at 0: \[ \int_{a}^{b} \frac{|x|}{x} \, dx = \int_{a}^{0} \frac{|x|}{x} \, dx + \int_{0}^{b} \frac{|x|}{x} \, dx \] 3. **Evaluating the First Integral** (\( \int_{a}^{0} \frac{|x|}{x} \, dx \)): - For \( x < 0 \), \( |x| = -x \), so: \[ \frac{|x|}{x} = \frac{-x}{x} = -1 \] - Therefore: \[ \int_{a}^{0} \frac{|x|}{x} \, dx = \int_{a}^{0} -1 \, dx = -\int_{a}^{0} 1 \, dx \] - This evaluates to: \[ -[x]_{a}^{0} = -[0 - a] = -(-a) = a \] 4. **Evaluating the Second Integral** (\( \int_{0}^{b} \frac{|x|}{x} \, dx \)): - For \( x \geq 0 \), \( |x| = x \), so: \[ \frac{|x|}{x} = \frac{x}{x} = 1 \] - Therefore: \[ \int_{0}^{b} \frac{|x|}{x} \, dx = \int_{0}^{b} 1 \, dx = [x]_{0}^{b} = b - 0 = b \] 5. **Combining the Results**: - Now, we combine the results of both integrals: \[ \int_{a}^{b} \frac{|x|}{x} \, dx = a + b \] 6. **Final Result**: - The value of the integral \( \int_{a}^{b} \frac{|x|}{x} \, dx \) is: \[ a + b \]

To solve the integral \( \int_{a}^{b} \frac{|x|}{x} \, dx \) where \( a < 0 < b \), we will break the integral into two parts based on the definition of the absolute value function. ### Step-by-Step Solution: 1. **Understanding the Absolute Value Function**: - The absolute value function \( |x| \) is defined as: \[ |x| = ...
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise PRACTICE EXERCISE (Exercise 2) (MISCELLANEOUS PROBLEMS)|76 Videos
  • DEFINITE INTEGRALS

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|22 Videos
  • CONTINUITY

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|16 Videos
  • DIFFERENTIAL EQUATION

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|27 Videos

Similar Questions

Explore conceptually related problems

The value of the integral int_(a)^(b) (|x|)/(x)dx, a lt b is

The value of integral int_(a)^(b)(|x|)/(x)dx , a lt b is :

int_(a)^(b) sqrt((x-a)(b-x)) dx, (b gt a) is equal to

The value of int_(alpha)^(beta) x|x|dx , where a lt 0 lt beta , is

The value fo int_a^b (x)/(|x|) dx , a lt b lt 0 is :

compute the integral : int_(a)^(b) x^(m) dx (m ne - 1, 0 lt a lt b)

int_(0)^(b)(|1-x|dx)/(1-x) is equal to

MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS-DEFINITE INTEGRALS-MHT CET Corner
  1. int (a)^(b) (|x|)/x dx , a lt 0 lt b, is equal to

    Text Solution

    |

  2. int (-pi/2)^(pi/2)log((2-sin x)/(2+sinx))dx is equal to

    Text Solution

    |

  3. int (0)^(pi //2)((root(n)(secx))/(root(n)(secx)+root(n)("cosec"x)))dx=

    Text Solution

    |

  4. The value of int 0 ^ 1 x ^ 2 ( 1 - x ^ 2 ) ^ (3//2 ) dx ...

    Text Solution

    |

  5. The value of int0^oox/((1+x)(x^2+1))dx is

    Text Solution

    |

  6. Evaluate int(0)^(pi)(x dx)/(1+cos alpha sin x),where 0lt alpha lt pi.

    Text Solution

    |

  7. int(pi//2)^(pi//2)(cosx)/(1+e^(x))dx is equal to

    Text Solution

    |

  8. int(0)^(pi//2)(1)/((1+tanx))dx=?

    Text Solution

    |

  9. If int(0)^(1) tan^(-1) x dx = p , then the value of int(0)^(1) tan^(-1...

    Text Solution

    |

  10. The value of int (0)^(pi//2) log ("cosec "x) dx is

    Text Solution

    |

  11. Which of the following is true ?

    Text Solution

    |

  12. int(0)^(5) 1/((x-1)(x-2))dx is equal to

    Text Solution

    |

  13. int(pi/4)^(pi/2) e^x(logsinx+cotx)dx

    Text Solution

    |

  14. The value of int(0)^(pi) x sin^(3) x dx is

    Text Solution

    |

  15. The value of int0 ^(pi/2) (cos3x+1)/(cosx - 1) dx is equal to

    Text Solution

    |

  16. The value of underset(0)overset(1)int tan^(-1) ((2x-1)/(1+x-x^(2)))dx ...

    Text Solution

    |

  17. If f is a continous function, then

    Text Solution

    |

  18. The value of int(-pi)^(pi) sin^(3) x cos^(2) x dx is equal to

    Text Solution

    |

  19. The value of int(-1)^(1) log ((x-1)/(x+1))dx is

    Text Solution

    |

  20. int(pi//6)^(pi//3)(1)/((1+sqrt(tanx)))dx=(pi)/(12)

    Text Solution

    |

  21. int (1)^(2)e^(x) (1/x - 1/(x^(2)))dx is qual to

    Text Solution

    |