Home
Class 12
MATHS
int (0)^(pi//2) x sin^(2) x cos^(2) x dx...

` int _(0)^(pi//2) x sin^(2) x cos^(2) x dx ` is equal to

A

`(pi^(2))/(32)`

B

`(pi^(2))/(16)`

C

`(pi)/(32)`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int_0^{\frac{\pi}{2}} x \sin^2 x \cos^2 x \, dx \), we can follow these steps: ### Step 1: Rewrite the integrand We start by rewriting the integrand using the identity for sine and cosine: \[ \sin^2 x \cos^2 x = \left(\frac{1}{4} \sin(2x)\right)^2 = \frac{1}{4} \sin^2(2x) \] Thus, we can rewrite the integral as: \[ I = \int_0^{\frac{\pi}{2}} x \cdot \frac{1}{4} \sin^2(2x) \, dx = \frac{1}{4} \int_0^{\frac{\pi}{2}} x \sin^2(2x) \, dx \] ### Step 2: Use integration by parts Let \( J = \int_0^{\frac{\pi}{2}} x \sin^2(2x) \, dx \). We will use integration by parts, where we let: - \( u = x \) ⇒ \( du = dx \) - \( dv = \sin^2(2x) \, dx \) To find \( v \), we need to integrate \( \sin^2(2x) \): \[ \sin^2(2x) = \frac{1 - \cos(4x)}{2} \] Thus, \[ v = \int \sin^2(2x) \, dx = \int \frac{1 - \cos(4x)}{2} \, dx = \frac{x}{2} - \frac{\sin(4x)}{8} \] ### Step 3: Apply integration by parts formula Now we apply the integration by parts formula: \[ J = uv \bigg|_0^{\frac{\pi}{2}} - \int v \, du \] Calculating \( uv \bigg|_0^{\frac{\pi}{2}} \): \[ uv \bigg|_0^{\frac{\pi}{2}} = \left(\frac{\pi}{2} \cdot \left(\frac{\frac{\pi}{2}}{2} - \frac{\sin(4 \cdot \frac{\pi}{2})}{8}\right)\right) - \left(0 \cdot \left(\frac{0}{2} - \frac{\sin(0)}{8}\right)\right) \] Since \( \sin(2\pi) = 0 \): \[ = \frac{\pi}{2} \cdot \left(\frac{\pi}{4} - 0\right) = \frac{\pi^2}{8} \] ### Step 4: Calculate the remaining integral Now we need to calculate: \[ \int_0^{\frac{\pi}{2}} \left(\frac{x}{2} - \frac{\sin(4x)}{8}\right) \, dx \] This gives us: \[ \int_0^{\frac{\pi}{2}} \frac{x}{2} \, dx - \int_0^{\frac{\pi}{2}} \frac{\sin(4x)}{8} \, dx \] Calculating the first integral: \[ \int_0^{\frac{\pi}{2}} \frac{x}{2} \, dx = \frac{1}{2} \cdot \left[\frac{x^2}{2}\right]_0^{\frac{\pi}{2}} = \frac{1}{2} \cdot \frac{\left(\frac{\pi}{2}\right)^2}{2} = \frac{\pi^2}{8} \] Calculating the second integral: \[ \int_0^{\frac{\pi}{2}} \frac{\sin(4x)}{8} \, dx = \frac{1}{8} \cdot \left[-\frac{\cos(4x)}{4}\right]_0^{\frac{\pi}{2}} = \frac{1}{8} \cdot \left[-\frac{\cos(2\pi)}{4} + \frac{\cos(0)}{4}\right] = \frac{1}{8} \cdot \left[-\frac{1}{4} + \frac{1}{4}\right] = 0 \] ### Step 5: Combine results Thus, we have: \[ J = \frac{\pi^2}{8} - 0 = \frac{\pi^2}{8} \] Finally, substituting back into our expression for \( I \): \[ I = \frac{1}{4} J = \frac{1}{4} \cdot \frac{\pi^2}{8} = \frac{\pi^2}{32} \] ### Final Result Thus, the value of the integral is: \[ \boxed{\frac{\pi^2}{32}} \]

To solve the integral \( I = \int_0^{\frac{\pi}{2}} x \sin^2 x \cos^2 x \, dx \), we can follow these steps: ### Step 1: Rewrite the integrand We start by rewriting the integrand using the identity for sine and cosine: \[ \sin^2 x \cos^2 x = \left(\frac{1}{4} \sin(2x)\right)^2 = \frac{1}{4} \sin^2(2x) \] Thus, we can rewrite the integral as: ...
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise PRACTICE EXERCISE (Exercise 2) (MISCELLANEOUS PROBLEMS)|76 Videos
  • DEFINITE INTEGRALS

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|22 Videos
  • CONTINUITY

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|16 Videos
  • DIFFERENTIAL EQUATION

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|27 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(pi//2) x sin x cos x dx

int_(0)^( pi/2)sin^(2)x cos x dx

int_(0)^(pi) x sin x cos^(2)x\ dx

int_(0)^(pi) x sin x. cos^(2) x dx

int_(0)^(pi//2) x sin cos x dx=?

int_(0)^(pi/2)(sin^(2)x*cos x)dx=

int_(0)^(pi//4) (sin x +cos x)/(3+sin2x)dx is equal to

int_(0)^(pi//2) (cos^(5)x)/(sin^(5)x+cos^(5)x)dx is equal to

MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS-DEFINITE INTEGRALS-MHT CET Corner
  1. int (0)^(pi//2) x sin^(2) x cos^(2) x dx is equal to

    Text Solution

    |

  2. int (-pi/2)^(pi/2)log((2-sin x)/(2+sinx))dx is equal to

    Text Solution

    |

  3. int (0)^(pi //2)((root(n)(secx))/(root(n)(secx)+root(n)("cosec"x)))dx=

    Text Solution

    |

  4. The value of int 0 ^ 1 x ^ 2 ( 1 - x ^ 2 ) ^ (3//2 ) dx ...

    Text Solution

    |

  5. The value of int0^oox/((1+x)(x^2+1))dx is

    Text Solution

    |

  6. Evaluate int(0)^(pi)(x dx)/(1+cos alpha sin x),where 0lt alpha lt pi.

    Text Solution

    |

  7. int(pi//2)^(pi//2)(cosx)/(1+e^(x))dx is equal to

    Text Solution

    |

  8. int(0)^(pi//2)(1)/((1+tanx))dx=?

    Text Solution

    |

  9. If int(0)^(1) tan^(-1) x dx = p , then the value of int(0)^(1) tan^(-1...

    Text Solution

    |

  10. The value of int (0)^(pi//2) log ("cosec "x) dx is

    Text Solution

    |

  11. Which of the following is true ?

    Text Solution

    |

  12. int(0)^(5) 1/((x-1)(x-2))dx is equal to

    Text Solution

    |

  13. int(pi/4)^(pi/2) e^x(logsinx+cotx)dx

    Text Solution

    |

  14. The value of int(0)^(pi) x sin^(3) x dx is

    Text Solution

    |

  15. The value of int0 ^(pi/2) (cos3x+1)/(cosx - 1) dx is equal to

    Text Solution

    |

  16. The value of underset(0)overset(1)int tan^(-1) ((2x-1)/(1+x-x^(2)))dx ...

    Text Solution

    |

  17. If f is a continous function, then

    Text Solution

    |

  18. The value of int(-pi)^(pi) sin^(3) x cos^(2) x dx is equal to

    Text Solution

    |

  19. The value of int(-1)^(1) log ((x-1)/(x+1))dx is

    Text Solution

    |

  20. int(pi//6)^(pi//3)(1)/((1+sqrt(tanx)))dx=(pi)/(12)

    Text Solution

    |

  21. int (1)^(2)e^(x) (1/x - 1/(x^(2)))dx is qual to

    Text Solution

    |