Home
Class 12
MATHS
The value of the integral int (0)^(2) |...

The value of the integral ` int _(0)^(2) | x^(2)-1| dx` is

A

0

B

2

C

`-(1)/(3)`

D

`-2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int_{0}^{2} |x^2 - 1| \, dx \), we need to analyze the expression inside the absolute value, \( |x^2 - 1| \). ### Step 1: Determine where \( x^2 - 1 \) changes sign The expression \( x^2 - 1 \) is zero when \( x^2 = 1 \), which gives us \( x = 1 \) (since we are considering the interval from 0 to 2). - For \( x < 1 \) (i.e., in the interval [0, 1]), \( x^2 - 1 < 0 \). - For \( x > 1 \) (i.e., in the interval [1, 2]), \( x^2 - 1 > 0 \). ### Step 2: Rewrite the integral using the properties of absolute value We can split the integral into two parts based on the point where the expression changes sign: \[ \int_{0}^{2} |x^2 - 1| \, dx = \int_{0}^{1} -(x^2 - 1) \, dx + \int_{1}^{2} (x^2 - 1) \, dx \] ### Step 3: Simplify the integrals Now we can rewrite the integrals: 1. For the first integral: \[ \int_{0}^{1} -(x^2 - 1) \, dx = \int_{0}^{1} (1 - x^2) \, dx \] 2. For the second integral: \[ \int_{1}^{2} (x^2 - 1) \, dx \] ### Step 4: Calculate the first integral Now we calculate \( \int_{0}^{1} (1 - x^2) \, dx \): \[ \int (1 - x^2) \, dx = x - \frac{x^3}{3} + C \] Evaluating from 0 to 1: \[ \left[ x - \frac{x^3}{3} \right]_{0}^{1} = \left( 1 - \frac{1^3}{3} \right) - \left( 0 - 0 \right) = 1 - \frac{1}{3} = \frac{2}{3} \] ### Step 5: Calculate the second integral Now we calculate \( \int_{1}^{2} (x^2 - 1) \, dx \): \[ \int (x^2 - 1) \, dx = \frac{x^3}{3} - x + C \] Evaluating from 1 to 2: \[ \left[ \frac{x^3}{3} - x \right]_{1}^{2} = \left( \frac{2^3}{3} - 2 \right) - \left( \frac{1^3}{3} - 1 \right) = \left( \frac{8}{3} - 2 \right) - \left( \frac{1}{3} - 1 \right) \] Calculating this gives: \[ \frac{8}{3} - \frac{6}{3} = \frac{2}{3} \quad \text{and} \quad \frac{1}{3} - 1 = -\frac{2}{3} \] Thus, \[ \left( \frac{2}{3} \right) - \left( -\frac{2}{3} \right) = \frac{2}{3} + \frac{2}{3} = \frac{4}{3} \] ### Step 6: Combine the results Now we combine both integrals: \[ \int_{0}^{2} |x^2 - 1| \, dx = \frac{2}{3} + \frac{4}{3} = \frac{6}{3} = 2 \] ### Final Answer The value of the integral \( \int_{0}^{2} |x^2 - 1| \, dx \) is \( \boxed{2} \).

To solve the integral \( \int_{0}^{2} |x^2 - 1| \, dx \), we need to analyze the expression inside the absolute value, \( |x^2 - 1| \). ### Step 1: Determine where \( x^2 - 1 \) changes sign The expression \( x^2 - 1 \) is zero when \( x^2 = 1 \), which gives us \( x = 1 \) (since we are considering the interval from 0 to 2). - For \( x < 1 \) (i.e., in the interval [0, 1]), \( x^2 - 1 < 0 \). - For \( x > 1 \) (i.e., in the interval [1, 2]), \( x^2 - 1 > 0 \). ...
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise PRACTICE EXERCISE (Exercise 2) (MISCELLANEOUS PROBLEMS)|76 Videos
  • DEFINITE INTEGRALS

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|22 Videos
  • CONTINUITY

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|16 Videos
  • DIFFERENTIAL EQUATION

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|27 Videos

Similar Questions

Explore conceptually related problems

The value of the integral int f_(0)^(2)|x^(2)-1|dx is

The value of the integral int_(0)^(2)|x^(2)-1|dx is

The value of the integral int_(0)^(2)x[x]dx

The value of the integral int_(-2)^(2)|1-x^(2)|dx is

The value of the integral int _(0)^(pi//2) sin ^(5) x dx is

Let f(x)=int _( z )^(2) (dy)/(sqrt(1+ y ^(3))). The value of the integral int _(0)^(2) xf (x ) dx is equal to:

The value of the integral int_(0)^(pi) | sin 2x| dx is

The value of the integral int_(0)^(1) e^(x^(2))dx lies in the integral

If f(x) is continuous and int_(0)^(9)f(x)dx=4 , then the value of the integral int_(0)^(3)x.f(x^(2))dx is

MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS-DEFINITE INTEGRALS-MHT CET Corner
  1. The value of the integral int (0)^(2) | x^(2)-1| dx is

    Text Solution

    |

  2. int (-pi/2)^(pi/2)log((2-sin x)/(2+sinx))dx is equal to

    Text Solution

    |

  3. int (0)^(pi //2)((root(n)(secx))/(root(n)(secx)+root(n)("cosec"x)))dx=

    Text Solution

    |

  4. The value of int 0 ^ 1 x ^ 2 ( 1 - x ^ 2 ) ^ (3//2 ) dx ...

    Text Solution

    |

  5. The value of int0^oox/((1+x)(x^2+1))dx is

    Text Solution

    |

  6. Evaluate int(0)^(pi)(x dx)/(1+cos alpha sin x),where 0lt alpha lt pi.

    Text Solution

    |

  7. int(pi//2)^(pi//2)(cosx)/(1+e^(x))dx is equal to

    Text Solution

    |

  8. int(0)^(pi//2)(1)/((1+tanx))dx=?

    Text Solution

    |

  9. If int(0)^(1) tan^(-1) x dx = p , then the value of int(0)^(1) tan^(-1...

    Text Solution

    |

  10. The value of int (0)^(pi//2) log ("cosec "x) dx is

    Text Solution

    |

  11. Which of the following is true ?

    Text Solution

    |

  12. int(0)^(5) 1/((x-1)(x-2))dx is equal to

    Text Solution

    |

  13. int(pi/4)^(pi/2) e^x(logsinx+cotx)dx

    Text Solution

    |

  14. The value of int(0)^(pi) x sin^(3) x dx is

    Text Solution

    |

  15. The value of int0 ^(pi/2) (cos3x+1)/(cosx - 1) dx is equal to

    Text Solution

    |

  16. The value of underset(0)overset(1)int tan^(-1) ((2x-1)/(1+x-x^(2)))dx ...

    Text Solution

    |

  17. If f is a continous function, then

    Text Solution

    |

  18. The value of int(-pi)^(pi) sin^(3) x cos^(2) x dx is equal to

    Text Solution

    |

  19. The value of int(-1)^(1) log ((x-1)/(x+1))dx is

    Text Solution

    |

  20. int(pi//6)^(pi//3)(1)/((1+sqrt(tanx)))dx=(pi)/(12)

    Text Solution

    |

  21. int (1)^(2)e^(x) (1/x - 1/(x^(2)))dx is qual to

    Text Solution

    |