Home
Class 12
MATHS
int(0)^(2)(x^(3)dx)/((x^(2)+1)^(3//2))is...

`int_(0)^(2)(x^(3)dx)/((x^(2)+1)^(3//2))`is equal to

A

`(sqrt2-1)^(2)`

B

`((sqrt2-1)^(2))/(2)`

C

`(sqrt2-1)/(2)`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int_{0}^{2} \frac{x^3}{(x^2 + 1)^{3/2}} \, dx \), we will use a substitution method. ### Step 1: Substitution Let \( t = x^2 + 1 \). Then, the differential \( dt = 2x \, dx \) or \( dx = \frac{dt}{2x} \). ### Step 2: Change of Limits When \( x = 0 \): \[ t = 0^2 + 1 = 1 \] When \( x = 2 \): \[ t = 2^2 + 1 = 5 \] Thus, the limits change from \( x: 0 \to 2 \) to \( t: 1 \to 5 \). ### Step 3: Express \( x \) in terms of \( t \) From the substitution \( t = x^2 + 1 \), we can express \( x^2 \) as: \[ x^2 = t - 1 \quad \text{and thus} \quad x = \sqrt{t - 1} \] ### Step 4: Substitute into the Integral Now substitute \( x \) and \( dx \) into the integral: \[ I = \int_{1}^{5} \frac{(\sqrt{t - 1})^3}{t^{3/2}} \cdot \frac{dt}{2\sqrt{t - 1}} = \int_{1}^{5} \frac{(t - 1)^{3/2}}{t^{3/2}} \cdot \frac{dt}{2} \] This simplifies to: \[ I = \frac{1}{2} \int_{1}^{5} \frac{(t - 1)^{3/2}}{t^{3/2}} \, dt \] ### Step 5: Simplify the Integral We can rewrite the integrand: \[ \frac{(t - 1)^{3/2}}{t^{3/2}} = \left(1 - \frac{1}{t}\right)^{3/2} \] Thus, we have: \[ I = \frac{1}{2} \int_{1}^{5} (t - 1)^{3/2} t^{-3/2} \, dt \] ### Step 6: Integration Now we can integrate: \[ I = \frac{1}{2} \left[ -\frac{2(t-1)^{5/2}}{5t^{3/2}} \right]_{1}^{5} \] ### Step 7: Evaluate the Integral Now we evaluate the limits: \[ I = \frac{1}{2} \left[ -\frac{2(5-1)^{5/2}}{5 \cdot 5^{3/2}} + \frac{2(1-1)^{5/2}}{5 \cdot 1^{3/2}} \right] \] Calculating this gives: \[ I = \frac{1}{2} \left[ -\frac{2(4)^{5/2}}{5 \cdot 5\sqrt{5}} \right] \] This simplifies to: \[ I = \frac{1}{2} \left[ -\frac{128}{25\sqrt{5}} \right] \] ### Final Step: Simplifying the Result Thus, the final result is: \[ I = \frac{64}{25\sqrt{5}} \] ### Final Answer: \[ \int_{0}^{2} \frac{x^3}{(x^2 + 1)^{3/2}} \, dx = \frac{64}{25\sqrt{5}} \]

To solve the integral \( I = \int_{0}^{2} \frac{x^3}{(x^2 + 1)^{3/2}} \, dx \), we will use a substitution method. ### Step 1: Substitution Let \( t = x^2 + 1 \). Then, the differential \( dt = 2x \, dx \) or \( dx = \frac{dt}{2x} \). ### Step 2: Change of Limits When \( x = 0 \): \[ ...
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise PRACTICE EXERCISE (Exercise 2) (MISCELLANEOUS PROBLEMS)|76 Videos
  • DEFINITE INTEGRALS

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|22 Videos
  • CONTINUITY

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|16 Videos
  • DIFFERENTIAL EQUATION

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|27 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(2)(x^(3))/((x^(2)+1)^(3//2))dx is equal to

int(x^(3)dx)/(x^(2)+1)^(3) is equal to

int(x^(3))/((1+x^(2))^(1//3))dx is equal to

int_(0)^(3)(x^(2)+1)dx

int_(0)^(3)(x^(2)+1)dx

int_(0)^(1)(x^(2))/(3-x^3)dx

int_(0)^(1)(dx)/((2x-3))

int_(0)^(1)(dx)/(3x+2)

int_(0)^(1)(dx)/((x+sqrt(x^(2)+1))^(3))=

int(1)/((a^(2)+x^(2))^(3//2))dx is equal to

MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS-DEFINITE INTEGRALS-MHT CET Corner
  1. int(0)^(2)(x^(3)dx)/((x^(2)+1)^(3//2))is equal to

    Text Solution

    |

  2. int (-pi/2)^(pi/2)log((2-sin x)/(2+sinx))dx is equal to

    Text Solution

    |

  3. int (0)^(pi //2)((root(n)(secx))/(root(n)(secx)+root(n)("cosec"x)))dx=

    Text Solution

    |

  4. The value of int 0 ^ 1 x ^ 2 ( 1 - x ^ 2 ) ^ (3//2 ) dx ...

    Text Solution

    |

  5. The value of int0^oox/((1+x)(x^2+1))dx is

    Text Solution

    |

  6. Evaluate int(0)^(pi)(x dx)/(1+cos alpha sin x),where 0lt alpha lt pi.

    Text Solution

    |

  7. int(pi//2)^(pi//2)(cosx)/(1+e^(x))dx is equal to

    Text Solution

    |

  8. int(0)^(pi//2)(1)/((1+tanx))dx=?

    Text Solution

    |

  9. If int(0)^(1) tan^(-1) x dx = p , then the value of int(0)^(1) tan^(-1...

    Text Solution

    |

  10. The value of int (0)^(pi//2) log ("cosec "x) dx is

    Text Solution

    |

  11. Which of the following is true ?

    Text Solution

    |

  12. int(0)^(5) 1/((x-1)(x-2))dx is equal to

    Text Solution

    |

  13. int(pi/4)^(pi/2) e^x(logsinx+cotx)dx

    Text Solution

    |

  14. The value of int(0)^(pi) x sin^(3) x dx is

    Text Solution

    |

  15. The value of int0 ^(pi/2) (cos3x+1)/(cosx - 1) dx is equal to

    Text Solution

    |

  16. The value of underset(0)overset(1)int tan^(-1) ((2x-1)/(1+x-x^(2)))dx ...

    Text Solution

    |

  17. If f is a continous function, then

    Text Solution

    |

  18. The value of int(-pi)^(pi) sin^(3) x cos^(2) x dx is equal to

    Text Solution

    |

  19. The value of int(-1)^(1) log ((x-1)/(x+1))dx is

    Text Solution

    |

  20. int(pi//6)^(pi//3)(1)/((1+sqrt(tanx)))dx=(pi)/(12)

    Text Solution

    |

  21. int (1)^(2)e^(x) (1/x - 1/(x^(2)))dx is qual to

    Text Solution

    |