Home
Class 12
MATHS
The value of int(0)^(a) sqrt((a-x)/x ) d...

The value of `int_(0)^(a) sqrt((a-x)/x )` dx is

A

`(a)/(2)`

B

`(a)/(4)`

C

`(pia)/(2)`

D

`(pia)/(4)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int_{0}^{a} \sqrt{\frac{a-x}{x}} \, dx \), we will use a substitution method. Here’s a step-by-step solution: ### Step 1: Substitution Let \( x = a \sin^2 \theta \). Then, we need to find \( dx \): \[ dx = 2a \sin \theta \cos \theta \, d\theta = a \sin(2\theta) \, d\theta \] ### Step 2: Change the limits of integration When \( x = 0 \): \[ 0 = a \sin^2 \theta \implies \sin \theta = 0 \implies \theta = 0 \] When \( x = a \): \[ a = a \sin^2 \theta \implies \sin^2 \theta = 1 \implies \theta = \frac{\pi}{2} \] ### Step 3: Rewrite the integral Now we can rewrite the integral in terms of \( \theta \): \[ I = \int_{0}^{\frac{\pi}{2}} \sqrt{\frac{a - a \sin^2 \theta}{a \sin^2 \theta}} \cdot a \sin(2\theta) \, d\theta \] This simplifies to: \[ I = \int_{0}^{\frac{\pi}{2}} \sqrt{\frac{a(1 - \sin^2 \theta)}{a \sin^2 \theta}} \cdot a \sin(2\theta) \, d\theta \] \[ = \int_{0}^{\frac{\pi}{2}} \sqrt{\frac{a \cos^2 \theta}{a \sin^2 \theta}} \cdot a \sin(2\theta) \, d\theta \] \[ = \int_{0}^{\frac{\pi}{2}} \frac{\cos \theta}{\sin \theta} \cdot a \sin(2\theta) \, d\theta \] ### Step 4: Simplifying the integral Using \( \sin(2\theta) = 2 \sin \theta \cos \theta \): \[ I = \int_{0}^{\frac{\pi}{2}} \frac{\cos \theta}{\sin \theta} \cdot a \cdot 2 \sin \theta \cos \theta \, d\theta \] \[ = 2a \int_{0}^{\frac{\pi}{2}} \cos^2 \theta \, d\theta \] ### Step 5: Evaluate the integral Using the identity \( \cos^2 \theta = \frac{1 + \cos(2\theta)}{2} \): \[ I = 2a \int_{0}^{\frac{\pi}{2}} \frac{1 + \cos(2\theta)}{2} \, d\theta \] \[ = a \left[ \theta + \frac{\sin(2\theta)}{2} \right]_{0}^{\frac{\pi}{2}} \] Evaluating the limits: \[ = a \left[ \frac{\pi}{2} + 0 - (0 + 0) \right] = a \cdot \frac{\pi}{2} \] ### Final Answer Thus, the value of the integral is: \[ I = \frac{a \pi}{2} \] ---

To solve the integral \( I = \int_{0}^{a} \sqrt{\frac{a-x}{x}} \, dx \), we will use a substitution method. Here’s a step-by-step solution: ### Step 1: Substitution Let \( x = a \sin^2 \theta \). Then, we need to find \( dx \): \[ dx = 2a \sin \theta \cos \theta \, d\theta = a \sin(2\theta) \, d\theta \] ...
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise PRACTICE EXERCISE (Exercise 2) (MISCELLANEOUS PROBLEMS)|76 Videos
  • DEFINITE INTEGRALS

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|22 Videos
  • CONTINUITY

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|16 Videos
  • DIFFERENTIAL EQUATION

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|27 Videos

Similar Questions

Explore conceptually related problems

The value of int_(0)^(1) sqrt((1-x)/(1+x))dx is

int_(0)^(2) sqrt(2-x)dx .

int_(0)^(a)sqrt((a+x)/(a-x))dx=

The value of int_(0)^(4) 3^(sqrt(2x+1) )dx is

int_(0)^(4)x sqrt(x) dx=

The value of int (dx)/(sqrt (a-x))

int_(0)^(1)sqrt(x)dx=

int_(0)^(1)sqrt(x+1) dx =

int_(0)^(3)sqrt((x)/(3-x))dx

MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS-DEFINITE INTEGRALS-MHT CET Corner
  1. The value of int(0)^(a) sqrt((a-x)/x ) dx is

    Text Solution

    |

  2. int (-pi/2)^(pi/2)log((2-sin x)/(2+sinx))dx is equal to

    Text Solution

    |

  3. int (0)^(pi //2)((root(n)(secx))/(root(n)(secx)+root(n)("cosec"x)))dx=

    Text Solution

    |

  4. The value of int 0 ^ 1 x ^ 2 ( 1 - x ^ 2 ) ^ (3//2 ) dx ...

    Text Solution

    |

  5. The value of int0^oox/((1+x)(x^2+1))dx is

    Text Solution

    |

  6. Evaluate int(0)^(pi)(x dx)/(1+cos alpha sin x),where 0lt alpha lt pi.

    Text Solution

    |

  7. int(pi//2)^(pi//2)(cosx)/(1+e^(x))dx is equal to

    Text Solution

    |

  8. int(0)^(pi//2)(1)/((1+tanx))dx=?

    Text Solution

    |

  9. If int(0)^(1) tan^(-1) x dx = p , then the value of int(0)^(1) tan^(-1...

    Text Solution

    |

  10. The value of int (0)^(pi//2) log ("cosec "x) dx is

    Text Solution

    |

  11. Which of the following is true ?

    Text Solution

    |

  12. int(0)^(5) 1/((x-1)(x-2))dx is equal to

    Text Solution

    |

  13. int(pi/4)^(pi/2) e^x(logsinx+cotx)dx

    Text Solution

    |

  14. The value of int(0)^(pi) x sin^(3) x dx is

    Text Solution

    |

  15. The value of int0 ^(pi/2) (cos3x+1)/(cosx - 1) dx is equal to

    Text Solution

    |

  16. The value of underset(0)overset(1)int tan^(-1) ((2x-1)/(1+x-x^(2)))dx ...

    Text Solution

    |

  17. If f is a continous function, then

    Text Solution

    |

  18. The value of int(-pi)^(pi) sin^(3) x cos^(2) x dx is equal to

    Text Solution

    |

  19. The value of int(-1)^(1) log ((x-1)/(x+1))dx is

    Text Solution

    |

  20. int(pi//6)^(pi//3)(1)/((1+sqrt(tanx)))dx=(pi)/(12)

    Text Solution

    |

  21. int (1)^(2)e^(x) (1/x - 1/(x^(2)))dx is qual to

    Text Solution

    |