Home
Class 12
MATHS
The value of int(1)^(2) (dx)/(x(1+x^(4))...

The value of `int_(1)^(2) (dx)/(x(1+x^(4))` is

A

`(1)/(4)log.(17)/(32)`

B

`(1)/(4)log.(32)/(17)`

C

`log.(17)/(2)`

D

`(1)/(4)log.(17)/(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int_{1}^{2} \frac{dx}{x(1+x^4)} \), we will follow these steps: ### Step 1: Rewrite the integral We start with the integral: \[ I = \int_{1}^{2} \frac{dx}{x(1+x^4)} \] ### Step 2: Substitute \( x^4 \) Let's make the substitution \( t = x^4 \). Then, we differentiate to find \( dt \): \[ dt = 4x^3 \, dx \quad \Rightarrow \quad dx = \frac{dt}{4x^3} \] Also, we need to express \( x \) in terms of \( t \): \[ x = t^{1/4} \quad \Rightarrow \quad x^3 = (t^{1/4})^3 = t^{3/4} \] ### Step 3: Change the limits of integration When \( x = 1 \): \[ t = 1^4 = 1 \] When \( x = 2 \): \[ t = 2^4 = 16 \] Thus, the limits change from \( x = 1 \) to \( x = 2 \) to \( t = 1 \) to \( t = 16 \). ### Step 4: Substitute into the integral Now substituting \( dx \) and changing the limits: \[ I = \int_{1}^{16} \frac{1}{t^{1/4}(1+t)} \cdot \frac{dt}{4t^{3/4}} = \frac{1}{4} \int_{1}^{16} \frac{dt}{t(1+t)} \] ### Step 5: Partial fraction decomposition We can decompose \( \frac{1}{t(1+t)} \) into partial fractions: \[ \frac{1}{t(1+t)} = \frac{A}{t} + \frac{B}{1+t} \] Multiplying through by \( t(1+t) \): \[ 1 = A(1+t) + Bt \] Setting \( t = 0 \): \[ 1 = A \quad \Rightarrow \quad A = 1 \] Setting \( t = -1 \): \[ 1 = B(-1) \quad \Rightarrow \quad B = -1 \] Thus, we have: \[ \frac{1}{t(1+t)} = \frac{1}{t} - \frac{1}{1+t} \] ### Step 6: Substitute back into the integral Now substituting back into the integral: \[ I = \frac{1}{4} \int_{1}^{16} \left( \frac{1}{t} - \frac{1}{1+t} \right) dt \] ### Step 7: Integrate Now we can integrate: \[ \int \frac{1}{t} dt = \log t \quad \text{and} \quad \int \frac{1}{1+t} dt = \log(1+t) \] Thus, \[ I = \frac{1}{4} \left[ \log t - \log(1+t) \right]_{1}^{16} \] ### Step 8: Evaluate the limits Now we evaluate at the limits: \[ I = \frac{1}{4} \left[ \left( \log 16 - \log 17 \right) - \left( \log 1 - \log 2 \right) \right] \] Since \( \log 1 = 0 \): \[ I = \frac{1}{4} \left[ \log 16 - \log 17 + \log 2 \right] \] Using the properties of logarithms: \[ I = \frac{1}{4} \left[ \log \frac{16 \cdot 2}{17} \right] = \frac{1}{4} \left[ \log \frac{32}{17} \right] \] ### Final Answer Thus, the value of the integral is: \[ I = \frac{1}{4} \log \frac{32}{17} \]

To solve the integral \( I = \int_{1}^{2} \frac{dx}{x(1+x^4)} \), we will follow these steps: ### Step 1: Rewrite the integral We start with the integral: \[ I = \int_{1}^{2} \frac{dx}{x(1+x^4)} \] ...
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise PRACTICE EXERCISE (Exercise 2) (MISCELLANEOUS PROBLEMS)|76 Videos
  • DEFINITE INTEGRALS

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|22 Videos
  • CONTINUITY

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|16 Videos
  • DIFFERENTIAL EQUATION

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|27 Videos

Similar Questions

Explore conceptually related problems

The value of int_(1)^(3)(dx)/(x(1+x^(2))) is

The value of int_(0)^(oo)(dx)/(1+x^(4)) is (a) same as that of int_(0)^(oo)(x^(2)+1dx)/(1+x) (b) (pi)/(2sqrt(2))( c) same as that of int_(0)^(oo)(x^(2)+1dx)/(1+x^(4))(d)(pi)/(sqrt(2))

The value of int_(0)^(2)|1-x|dx

The value of int_(1)^(e^(2)) (dx)/(x(1+logx)^(2)) is

The value of int_(0)^(1)(x^(2))/(1+x^(2))dx is

The value of int_(1)^(4){x}^([x])dx

int_(1)^(2)((dx)/(x(x^(4)+1))) is equal to

The value of int_(-2)^(2)x(x-1)dx is:

int_(0)^(1)(2x)/((1+x^(4)))dx

The value of int_(1)^(2)(x^(2)+1)/(x^(4)-x^(2)+1)log(1+x-1/x)dx is

MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS-DEFINITE INTEGRALS-MHT CET Corner
  1. The value of int(1)^(2) (dx)/(x(1+x^(4)) is

    Text Solution

    |

  2. int (-pi/2)^(pi/2)log((2-sin x)/(2+sinx))dx is equal to

    Text Solution

    |

  3. int (0)^(pi //2)((root(n)(secx))/(root(n)(secx)+root(n)("cosec"x)))dx=

    Text Solution

    |

  4. The value of int 0 ^ 1 x ^ 2 ( 1 - x ^ 2 ) ^ (3//2 ) dx ...

    Text Solution

    |

  5. The value of int0^oox/((1+x)(x^2+1))dx is

    Text Solution

    |

  6. Evaluate int(0)^(pi)(x dx)/(1+cos alpha sin x),where 0lt alpha lt pi.

    Text Solution

    |

  7. int(pi//2)^(pi//2)(cosx)/(1+e^(x))dx is equal to

    Text Solution

    |

  8. int(0)^(pi//2)(1)/((1+tanx))dx=?

    Text Solution

    |

  9. If int(0)^(1) tan^(-1) x dx = p , then the value of int(0)^(1) tan^(-1...

    Text Solution

    |

  10. The value of int (0)^(pi//2) log ("cosec "x) dx is

    Text Solution

    |

  11. Which of the following is true ?

    Text Solution

    |

  12. int(0)^(5) 1/((x-1)(x-2))dx is equal to

    Text Solution

    |

  13. int(pi/4)^(pi/2) e^x(logsinx+cotx)dx

    Text Solution

    |

  14. The value of int(0)^(pi) x sin^(3) x dx is

    Text Solution

    |

  15. The value of int0 ^(pi/2) (cos3x+1)/(cosx - 1) dx is equal to

    Text Solution

    |

  16. The value of underset(0)overset(1)int tan^(-1) ((2x-1)/(1+x-x^(2)))dx ...

    Text Solution

    |

  17. If f is a continous function, then

    Text Solution

    |

  18. The value of int(-pi)^(pi) sin^(3) x cos^(2) x dx is equal to

    Text Solution

    |

  19. The value of int(-1)^(1) log ((x-1)/(x+1))dx is

    Text Solution

    |

  20. int(pi//6)^(pi//3)(1)/((1+sqrt(tanx)))dx=(pi)/(12)

    Text Solution

    |

  21. int (1)^(2)e^(x) (1/x - 1/(x^(2)))dx is qual to

    Text Solution

    |