Home
Class 12
MATHS
int (0)^(a) (x^(4)dx)/((a^(2)+x^(2))^(4)...

`int _(0)^(a) (x^(4)dx)/((a^(2)+x^(2))^(4))` is equal to

A

`(1)/(16a^(3))((pi)/(4)-(1)/(3))`

B

`(1)/(16a^(3))((pi)/(4)+(1)/(3))`

C

`(1)/(16)a^(3)((pi)/(4)-(1)/(3))`

D

`(1)/(16)a^(3)((pi)/(4)+(1)/(3))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ I = \int_{0}^{a} \frac{x^4 \, dx}{(a^2 + x^2)^4} \] we will use the substitution method. Let's go through the steps: ### Step 1: Substitution Let \( x = a \tan \theta \). Then, we have: \[ dx = a \sec^2 \theta \, d\theta \] When \( x = 0 \), \( \theta = 0 \) and when \( x = a \), \( \theta = \frac{\pi}{4} \). ### Step 2: Change the limits and substitute into the integral Substituting \( x \) and \( dx \) into the integral gives: \[ I = \int_{0}^{\frac{\pi}{4}} \frac{(a \tan \theta)^4 \cdot a \sec^2 \theta \, d\theta}{(a^2 + (a \tan \theta)^2)^4} \] This simplifies to: \[ I = \int_{0}^{\frac{\pi}{4}} \frac{a^5 \tan^4 \theta \sec^2 \theta \, d\theta}{(a^2(1 + \tan^2 \theta))^4} \] Using the identity \( 1 + \tan^2 \theta = \sec^2 \theta \): \[ I = \int_{0}^{\frac{\pi}{4}} \frac{a^5 \tan^4 \theta \sec^2 \theta \, d\theta}{(a^2 \sec^2 \theta)^4} = \int_{0}^{\frac{\pi}{4}} \frac{a^5 \tan^4 \theta \sec^2 \theta \, d\theta}{a^8 \sec^8 \theta} \] ### Step 3: Simplifying the integral This simplifies to: \[ I = \frac{1}{a^3} \int_{0}^{\frac{\pi}{4}} \tan^4 \theta \sec^{-6} \theta \, d\theta \] ### Step 4: Rewrite in terms of sine and cosine Using \( \tan \theta = \frac{\sin \theta}{\cos \theta} \) and \( \sec \theta = \frac{1}{\cos \theta} \): \[ I = \frac{1}{a^3} \int_{0}^{\frac{\pi}{4}} \frac{\sin^4 \theta}{\cos^4 \theta} \cdot \cos^6 \theta \, d\theta = \frac{1}{a^3} \int_{0}^{\frac{\pi}{4}} \sin^4 \theta \cos^2 \theta \, d\theta \] ### Step 5: Use the identity for sine Using the identity \( \sin^2 \theta = \frac{1 - \cos 2\theta}{2} \): \[ \sin^4 \theta = \left(\sin^2 \theta\right)^2 = \left(\frac{1 - \cos 2\theta}{2}\right)^2 = \frac{1 - 2\cos 2\theta + \cos^2 2\theta}{4} \] ### Step 6: Substitute and integrate Substituting this back into the integral: \[ I = \frac{1}{a^3} \int_{0}^{\frac{\pi}{4}} \left(\frac{1 - 2\cos 2\theta + \frac{1 + \cos 4\theta}{2}}{4}\right) \cos^2 \theta \, d\theta \] Now, we can integrate term by term. ### Step 7: Evaluate the integral This integral can be evaluated using standard techniques, leading to: \[ I = \frac{1}{16 a^3} \left( \frac{\pi}{4} - \frac{1}{3} \right) \] ### Final Result Thus, the final result is: \[ I = \frac{\pi}{64 a^3} - \frac{1}{48 a^3} \]

To solve the integral \[ I = \int_{0}^{a} \frac{x^4 \, dx}{(a^2 + x^2)^4} \] we will use the substitution method. Let's go through the steps: ...
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise PRACTICE EXERCISE (Exercise 2) (MISCELLANEOUS PROBLEMS)|76 Videos
  • DEFINITE INTEGRALS

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|22 Videos
  • CONTINUITY

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|16 Videos
  • DIFFERENTIAL EQUATION

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|27 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(a)(x^(4))/((a^(2)+x^(2))^(4))dx

int_(0)^(a)(x^(4))/((a^(2)+x^(2))^(4))dx

int(2x^(2)(1+2x^(2)))/((1+x^(2)+x^(4))^(2))dx is equal to

int_(0)^(2)(x+4)dx

7(int_(0)^(1)(x^(4)(1-x)^(4)dx)/(1+x^(2))+pi) is equal to

int_(0)^(a)(dx)/(x+sqrt(a^(2)-x^(2)))=(pi)/(4)

int_(0)^(2)((x^(4)+1))/((x^(2)+1))dx

int_(0)^(2) (dx)/(4+x-x^(2))=

int_(0)^(4)(2x+3)dx

int(x^(2)+2)/(x^(2)+4)dx is equal to

MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS-DEFINITE INTEGRALS-MHT CET Corner
  1. int (0)^(a) (x^(4)dx)/((a^(2)+x^(2))^(4)) is equal to

    Text Solution

    |

  2. int (-pi/2)^(pi/2)log((2-sin x)/(2+sinx))dx is equal to

    Text Solution

    |

  3. int (0)^(pi //2)((root(n)(secx))/(root(n)(secx)+root(n)("cosec"x)))dx=

    Text Solution

    |

  4. The value of int 0 ^ 1 x ^ 2 ( 1 - x ^ 2 ) ^ (3//2 ) dx ...

    Text Solution

    |

  5. The value of int0^oox/((1+x)(x^2+1))dx is

    Text Solution

    |

  6. Evaluate int(0)^(pi)(x dx)/(1+cos alpha sin x),where 0lt alpha lt pi.

    Text Solution

    |

  7. int(pi//2)^(pi//2)(cosx)/(1+e^(x))dx is equal to

    Text Solution

    |

  8. int(0)^(pi//2)(1)/((1+tanx))dx=?

    Text Solution

    |

  9. If int(0)^(1) tan^(-1) x dx = p , then the value of int(0)^(1) tan^(-1...

    Text Solution

    |

  10. The value of int (0)^(pi//2) log ("cosec "x) dx is

    Text Solution

    |

  11. Which of the following is true ?

    Text Solution

    |

  12. int(0)^(5) 1/((x-1)(x-2))dx is equal to

    Text Solution

    |

  13. int(pi/4)^(pi/2) e^x(logsinx+cotx)dx

    Text Solution

    |

  14. The value of int(0)^(pi) x sin^(3) x dx is

    Text Solution

    |

  15. The value of int0 ^(pi/2) (cos3x+1)/(cosx - 1) dx is equal to

    Text Solution

    |

  16. The value of underset(0)overset(1)int tan^(-1) ((2x-1)/(1+x-x^(2)))dx ...

    Text Solution

    |

  17. If f is a continous function, then

    Text Solution

    |

  18. The value of int(-pi)^(pi) sin^(3) x cos^(2) x dx is equal to

    Text Solution

    |

  19. The value of int(-1)^(1) log ((x-1)/(x+1))dx is

    Text Solution

    |

  20. int(pi//6)^(pi//3)(1)/((1+sqrt(tanx)))dx=(pi)/(12)

    Text Solution

    |

  21. int (1)^(2)e^(x) (1/x - 1/(x^(2)))dx is qual to

    Text Solution

    |