Home
Class 12
MATHS
int (3)^(8) (2-3x)/(xsqrt(1+x))dx is eq...

`int _(3)^(8) (2-3x)/(xsqrt(1+x))dx` is equal to

A

`2log((3)/(2e^(3)))`

B

`log((3)/(e^(3)))`

C

`4log((3)/(e^(3)))`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \(\int_{3}^{8} \frac{2 - 3x}{x \sqrt{1+x}} \, dx\), we will perform a substitution and then evaluate the integral step by step. ### Step 1: Substitution Let \( t^2 = 1 + x \). Then, we have: \[ x = t^2 - 1 \] Differentiating both sides gives: \[ dx = 2t \, dt \] ### Step 2: Change the limits of integration When \( x = 3 \): \[ t^2 = 1 + 3 = 4 \implies t = 2 \] When \( x = 8 \): \[ t^2 = 1 + 8 = 9 \implies t = 3 \] Thus, the limits change from \( x = 3 \) to \( x = 8 \) into \( t = 2 \) to \( t = 3 \). ### Step 3: Substitute into the integral Now, substituting \( x \) and \( dx \) into the integral: \[ \int_{3}^{8} \frac{2 - 3x}{x \sqrt{1+x}} \, dx = \int_{2}^{3} \frac{2 - 3(t^2 - 1)}{(t^2 - 1) \sqrt{t^2}} \cdot 2t \, dt \] This simplifies to: \[ = \int_{2}^{3} \frac{2 - 3t^2 + 3}{(t^2 - 1)t} \cdot 2t \, dt = \int_{2}^{3} \frac{5 - 3t^2}{t^2 - 1} \cdot 2 \, dt \] ### Step 4: Simplify the integral Now we can separate the integral: \[ = 2 \int_{2}^{3} \frac{5 - 3t^2}{t^2 - 1} \, dt = 2 \left( \int_{2}^{3} \frac{5}{t^2 - 1} \, dt - 3 \int_{2}^{3} dt \right) \] ### Step 5: Evaluate the integrals 1. **First Integral**: \[ \int \frac{5}{t^2 - 1} \, dt = 5 \cdot \frac{1}{2} \ln \left| \frac{t-1}{t+1} \right| + C = \frac{5}{2} \ln \left| \frac{t-1}{t+1} \right| + C \] Evaluating from 2 to 3: \[ = \frac{5}{2} \left( \ln \left| \frac{3-1}{3+1} \right| - \ln \left| \frac{2-1}{2+1} \right| \right) = \frac{5}{2} \left( \ln \left( \frac{2}{4} \right) - \ln \left( \frac{1}{3} \right) \right) = \frac{5}{2} \left( \ln \left( \frac{2}{4} \cdot 3 \right) \right) = \frac{5}{2} \ln \left( \frac{3}{2} \right) \] 2. **Second Integral**: \[ \int dt = t \bigg|_{2}^{3} = 3 - 2 = 1 \] ### Step 6: Combine the results Putting it all together: \[ = 2 \left( \frac{5}{2} \ln \left( \frac{3}{2} \right) - 3 \cdot 1 \right) = 5 \ln \left( \frac{3}{2} \right) - 6 \] ### Final Answer Thus, the value of the integral is: \[ \int_{3}^{8} \frac{2 - 3x}{x \sqrt{1+x}} \, dx = 5 \ln \left( \frac{3}{2} \right) - 6 \]

To solve the integral \(\int_{3}^{8} \frac{2 - 3x}{x \sqrt{1+x}} \, dx\), we will perform a substitution and then evaluate the integral step by step. ### Step 1: Substitution Let \( t^2 = 1 + x \). Then, we have: \[ x = t^2 - 1 \] Differentiating both sides gives: ...
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise PRACTICE EXERCISE (Exercise 2) (MISCELLANEOUS PROBLEMS)|76 Videos
  • DEFINITE INTEGRALS

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|22 Videos
  • CONTINUITY

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|16 Videos
  • DIFFERENTIAL EQUATION

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|27 Videos

Similar Questions

Explore conceptually related problems

int_(3)^(8)(2-3x)/(x sqrt(1+x))dx is equal to

int(1)/(xsqrt(1-x^(3))) dx is equal to

int(1+x^(2))/(xsqrt(1+x^(4)))dx is equal to

int_(8)^(15)(dx)/((x-3)sqrt(x+1)) is equal to

int(x^(2-1))/(xsqrt(x^4+3x^2)+1) dx is equal to

int (1)/(xsqrt(x))dx

int_(3/4)^(4/3)1/(xsqrt(x^2+1))dx

int(1)/(xsqrt(x-1))dx=

int_(1)^(2)dx/(xsqrt(x^2-1))

int_(0)^(2) xsqrt(2-x)dx

MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS-DEFINITE INTEGRALS-MHT CET Corner
  1. int (3)^(8) (2-3x)/(xsqrt(1+x))dx is equal to

    Text Solution

    |

  2. int (-pi/2)^(pi/2)log((2-sin x)/(2+sinx))dx is equal to

    Text Solution

    |

  3. int (0)^(pi //2)((root(n)(secx))/(root(n)(secx)+root(n)("cosec"x)))dx=

    Text Solution

    |

  4. The value of int 0 ^ 1 x ^ 2 ( 1 - x ^ 2 ) ^ (3//2 ) dx ...

    Text Solution

    |

  5. The value of int0^oox/((1+x)(x^2+1))dx is

    Text Solution

    |

  6. Evaluate int(0)^(pi)(x dx)/(1+cos alpha sin x),where 0lt alpha lt pi.

    Text Solution

    |

  7. int(pi//2)^(pi//2)(cosx)/(1+e^(x))dx is equal to

    Text Solution

    |

  8. int(0)^(pi//2)(1)/((1+tanx))dx=?

    Text Solution

    |

  9. If int(0)^(1) tan^(-1) x dx = p , then the value of int(0)^(1) tan^(-1...

    Text Solution

    |

  10. The value of int (0)^(pi//2) log ("cosec "x) dx is

    Text Solution

    |

  11. Which of the following is true ?

    Text Solution

    |

  12. int(0)^(5) 1/((x-1)(x-2))dx is equal to

    Text Solution

    |

  13. int(pi/4)^(pi/2) e^x(logsinx+cotx)dx

    Text Solution

    |

  14. The value of int(0)^(pi) x sin^(3) x dx is

    Text Solution

    |

  15. The value of int0 ^(pi/2) (cos3x+1)/(cosx - 1) dx is equal to

    Text Solution

    |

  16. The value of underset(0)overset(1)int tan^(-1) ((2x-1)/(1+x-x^(2)))dx ...

    Text Solution

    |

  17. If f is a continous function, then

    Text Solution

    |

  18. The value of int(-pi)^(pi) sin^(3) x cos^(2) x dx is equal to

    Text Solution

    |

  19. The value of int(-1)^(1) log ((x-1)/(x+1))dx is

    Text Solution

    |

  20. int(pi//6)^(pi//3)(1)/((1+sqrt(tanx)))dx=(pi)/(12)

    Text Solution

    |

  21. int (1)^(2)e^(x) (1/x - 1/(x^(2)))dx is qual to

    Text Solution

    |