Home
Class 12
MATHS
int(0)^(pi/4) (sec x)/(1+2 sin^(2)x) is ...

`int_(0)^(pi/4) (sec x)/(1+2 sin^(2)x)` is equal to

A

`(1)/(3)[log(sqrt2+1)+(pi)/(2sqrt2)]`

B

`(1)/(3)[log(sqrt2+1)-(pi)/(2sqrt2)]`

C

`3[log(sqrt2+1)-(pi)/(2sqrt2)]`

D

`3[log(sqrt2+1)+(pi)/(2sqrt2)]`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int_{0}^{\frac{\pi}{4}} \frac{\sec x}{1 + 2 \sin^2 x} \, dx \), we will follow these steps: ### Step 1: Rewrite the integral We start by rewriting \(\sec x\) as \(\frac{1}{\cos x}\): \[ I = \int_{0}^{\frac{\pi}{4}} \frac{1}{\cos x (1 + 2 \sin^2 x)} \, dx \] ### Step 2: Multiply and divide by \(\cos x\) Next, we multiply and divide the integrand by \(\cos x\): \[ I = \int_{0}^{\frac{\pi}{4}} \frac{\cos x}{(1 + 2 \sin^2 x) \cos x} \, dx \] ### Step 3: Change of variable Let \( t = \sin x \). Then, \( dt = \cos x \, dx \). When \( x = 0 \), \( t = 0 \) and when \( x = \frac{\pi}{4} \), \( t = \frac{1}{\sqrt{2}} \): \[ I = \int_{0}^{\frac{1}{\sqrt{2}}} \frac{1}{(1 + 2t^2)(1 - t^2)} \, dt \] ### Step 4: Partial fraction decomposition We need to decompose the integrand: \[ \frac{1}{(1 - t^2)(1 + 2t^2)} = \frac{A}{1 - t^2} + \frac{B}{1 + 2t^2} \] Multiplying through by the denominator: \[ 1 = A(1 + 2t^2) + B(1 - t^2) \] Expanding and rearranging gives: \[ 1 = (A + B) + (2A - B)t^2 \] By comparing coefficients, we get: 1. \( A + B = 1 \) 2. \( 2A - B = 0 \) ### Step 5: Solve for A and B From \( 2A - B = 0 \), we have \( B = 2A \). Substituting into the first equation: \[ A + 2A = 1 \implies 3A = 1 \implies A = \frac{1}{3} \] Then, substituting back to find \( B \): \[ B = 2A = \frac{2}{3} \] ### Step 6: Rewrite the integral Now substituting \( A \) and \( B \) back into the integral: \[ I = \int_{0}^{\frac{1}{\sqrt{2}}} \left( \frac{1/3}{1 - t^2} + \frac{2/3}{1 + 2t^2} \right) dt \] This can be split into two separate integrals: \[ I = \frac{1}{3} \int_{0}^{\frac{1}{\sqrt{2}}} \frac{1}{1 - t^2} \, dt + \frac{2}{3} \int_{0}^{\frac{1}{\sqrt{2}}} \frac{1}{1 + 2t^2} \, dt \] ### Step 7: Evaluate the integrals 1. The first integral: \[ \int \frac{1}{1 - t^2} \, dt = \frac{1}{2} \log \left| \frac{1 + t}{1 - t} \right| + C \] Evaluating from \( 0 \) to \( \frac{1}{\sqrt{2}} \): \[ \frac{1}{2} \log \left( \frac{1 + \frac{1}{\sqrt{2}}}{1 - \frac{1}{\sqrt{2}}} \right) \] 2. The second integral: \[ \int \frac{1}{1 + 2t^2} \, dt = \frac{1}{\sqrt{2}} \tan^{-1}(\sqrt{2} t) + C \] Evaluating from \( 0 \) to \( \frac{1}{\sqrt{2}} \): \[ \frac{1}{\sqrt{2}} \tan^{-1}(1) = \frac{\pi}{4\sqrt{2}} \] ### Step 8: Combine results Combining both results: \[ I = \frac{1}{3} \cdot \frac{1}{2} \log \left( \frac{1 + \frac{1}{\sqrt{2}}}{1 - \frac{1}{\sqrt{2}}} \right) + \frac{2}{3} \cdot \frac{\pi}{4\sqrt{2}} \] ### Final Answer After simplification, we find: \[ I = \frac{1}{3} \cdot \frac{1}{2} \log \left( \frac{\sqrt{2} + 1}{\sqrt{2} - 1} \right) + \frac{\pi}{6\sqrt{2}} \]

To solve the integral \( I = \int_{0}^{\frac{\pi}{4}} \frac{\sec x}{1 + 2 \sin^2 x} \, dx \), we will follow these steps: ### Step 1: Rewrite the integral We start by rewriting \(\sec x\) as \(\frac{1}{\cos x}\): \[ I = \int_{0}^{\frac{\pi}{4}} \frac{1}{\cos x (1 + 2 \sin^2 x)} \, dx \] ...
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise PRACTICE EXERCISE (Exercise 2) (MISCELLANEOUS PROBLEMS)|76 Videos
  • DEFINITE INTEGRALS

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|22 Videos
  • CONTINUITY

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|16 Videos
  • DIFFERENTIAL EQUATION

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|27 Videos

Similar Questions

Explore conceptually related problems

int_(0)^((pi)/(4))(sec x)/(1+2sin^(2)x)dx

" 0."int_(0)^( pi/4)(dx)/(2+sin^(2)x)=

int_(0)^(pi//4) (sin x +cos x)/(3+sin2x)dx is equal to

If n=2m+1,m in N uu{0}, then int_(0)^((pi)/(2))(sin nx)/(sin x)dx is equal to (i)pi(ii)(pi)/(2)(iii)(pi)/(4) (iv) none of these

int _(0)^(2pi) (sin x + |sin x|)dx is equal to

The value of the definite integral int_(0)^((pi)/(2))sin x sin2x sin3xdx is equal to :

int_(0)^(pi//4) x sec^(2)xdx =

int_(0)^(pi//2)(sinxcosx)/((1+sin^(4)x))dx

int_(pi//4)^(pi//3)(sec x)/(sin x)dx =

MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS-DEFINITE INTEGRALS-MHT CET Corner
  1. int(0)^(pi/4) (sec x)/(1+2 sin^(2)x) is equal to

    Text Solution

    |

  2. int (-pi/2)^(pi/2)log((2-sin x)/(2+sinx))dx is equal to

    Text Solution

    |

  3. int (0)^(pi //2)((root(n)(secx))/(root(n)(secx)+root(n)("cosec"x)))dx=

    Text Solution

    |

  4. The value of int 0 ^ 1 x ^ 2 ( 1 - x ^ 2 ) ^ (3//2 ) dx ...

    Text Solution

    |

  5. The value of int0^oox/((1+x)(x^2+1))dx is

    Text Solution

    |

  6. Evaluate int(0)^(pi)(x dx)/(1+cos alpha sin x),where 0lt alpha lt pi.

    Text Solution

    |

  7. int(pi//2)^(pi//2)(cosx)/(1+e^(x))dx is equal to

    Text Solution

    |

  8. int(0)^(pi//2)(1)/((1+tanx))dx=?

    Text Solution

    |

  9. If int(0)^(1) tan^(-1) x dx = p , then the value of int(0)^(1) tan^(-1...

    Text Solution

    |

  10. The value of int (0)^(pi//2) log ("cosec "x) dx is

    Text Solution

    |

  11. Which of the following is true ?

    Text Solution

    |

  12. int(0)^(5) 1/((x-1)(x-2))dx is equal to

    Text Solution

    |

  13. int(pi/4)^(pi/2) e^x(logsinx+cotx)dx

    Text Solution

    |

  14. The value of int(0)^(pi) x sin^(3) x dx is

    Text Solution

    |

  15. The value of int0 ^(pi/2) (cos3x+1)/(cosx - 1) dx is equal to

    Text Solution

    |

  16. The value of underset(0)overset(1)int tan^(-1) ((2x-1)/(1+x-x^(2)))dx ...

    Text Solution

    |

  17. If f is a continous function, then

    Text Solution

    |

  18. The value of int(-pi)^(pi) sin^(3) x cos^(2) x dx is equal to

    Text Solution

    |

  19. The value of int(-1)^(1) log ((x-1)/(x+1))dx is

    Text Solution

    |

  20. int(pi//6)^(pi//3)(1)/((1+sqrt(tanx)))dx=(pi)/(12)

    Text Solution

    |

  21. int (1)^(2)e^(x) (1/x - 1/(x^(2)))dx is qual to

    Text Solution

    |