Home
Class 12
MATHS
int(0)^(pi//4) (sec^(2)x)/((1+tan x)(2+t...

`int_(0)^(pi//4) (sec^(2)x)/((1+tan x)(2+tan x))dx` is equal to

A

`log_(e)((2)/(3))`

B

`log_(e)3`

C

`(1)/(3)log_(e)((4)/(3))`

D

`log_(e)((4)/(3))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int_{0}^{\frac{\pi}{4}} \frac{\sec^2 x}{(1 + \tan x)(2 + \tan x)} \, dx \), we will follow these steps: ### Step 1: Substitution Let \( t = 1 + \tan x \). Then, we differentiate: \[ dt = \sec^2 x \, dx \quad \Rightarrow \quad dx = \frac{dt}{\sec^2 x} \] When \( x = 0 \), \( t = 1 + \tan(0) = 1 \). When \( x = \frac{\pi}{4} \), \( t = 1 + \tan\left(\frac{\pi}{4}\right) = 2 \). ### Step 2: Change the limits and rewrite the integral Now, we can rewrite the integral in terms of \( t \): \[ I = \int_{1}^{2} \frac{1}{t(1 + t)} \, dt \] ### Step 3: Partial Fraction Decomposition We can decompose \( \frac{1}{t(1 + t)} \) into partial fractions: \[ \frac{1}{t(1 + t)} = \frac{A}{t} + \frac{B}{1 + t} \] Multiplying through by \( t(1 + t) \): \[ 1 = A(1 + t) + Bt \] Setting \( t = 0 \): \[ 1 = A \quad \Rightarrow \quad A = 1 \] Setting \( t = -1 \): \[ 1 = B(-1) \quad \Rightarrow \quad B = -1 \] Thus, we have: \[ \frac{1}{t(1 + t)} = \frac{1}{t} - \frac{1}{1 + t} \] ### Step 4: Integrate Now we can rewrite the integral: \[ I = \int_{1}^{2} \left( \frac{1}{t} - \frac{1}{1 + t} \right) dt \] This can be split into two integrals: \[ I = \int_{1}^{2} \frac{1}{t} \, dt - \int_{1}^{2} \frac{1}{1 + t} \, dt \] Calculating these integrals: \[ \int \frac{1}{t} \, dt = \ln |t| \quad \text{and} \quad \int \frac{1}{1 + t} \, dt = \ln |1 + t| \] Thus, \[ I = \left[ \ln t \right]_{1}^{2} - \left[ \ln(1 + t) \right]_{1}^{2} \] Calculating the limits: \[ I = \left( \ln 2 - \ln 1 \right) - \left( \ln(3) - \ln(2) \right) \] Since \( \ln 1 = 0 \): \[ I = \ln 2 - (\ln 3 - \ln 2) = \ln 2 - \ln 3 + \ln 2 = 2\ln 2 - \ln 3 \] ### Final Result Thus, the value of the integral is: \[ I = \ln\left(\frac{4}{3}\right) \]

To solve the integral \( I = \int_{0}^{\frac{\pi}{4}} \frac{\sec^2 x}{(1 + \tan x)(2 + \tan x)} \, dx \), we will follow these steps: ### Step 1: Substitution Let \( t = 1 + \tan x \). Then, we differentiate: \[ dt = \sec^2 x \, dx \quad \Rightarrow \quad dx = \frac{dt}{\sec^2 x} \] When \( x = 0 \), \( t = 1 + \tan(0) = 1 \). When \( x = \frac{\pi}{4} \), \( t = 1 + \tan\left(\frac{\pi}{4}\right) = 2 \). ...
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise PRACTICE EXERCISE (Exercise 2) (MISCELLANEOUS PROBLEMS)|76 Videos
  • DEFINITE INTEGRALS

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|22 Videos
  • CONTINUITY

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|16 Videos
  • DIFFERENTIAL EQUATION

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|27 Videos

Similar Questions

Explore conceptually related problems

int(sec^(2)x)/(log(tan x)^(tan x)dx)

int(sec^(2)x)/(tan x)dx

int(sec^(2)x)/(tan x)dx

int_(0)^(pi//4) tan^(6)x sec^(2)x dx=

int_(0)^(pi//4)e^(x)(1+tan x + tan^(2)x)dx=

Evaluate: int_(0)^((pi)/(4)) (sec^(2)x)/(3 tan^(2) x+4 tan x+1)dx

Evaluate the following : int_(0)^(pi//4)(sec^(2)x)/(tan^(2)x+4 tanx+1)dx

int_(0)^(pi//4) e^(x) (tan x+ sec^(2)x) dx

int_(0)^( pi)(x sec^(2)x)/(a^(2)+b^(2)tan^(2)x)dx

int(sec^(4)x)/(sqrt(tan x))dx is equal to

MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS-DEFINITE INTEGRALS-MHT CET Corner
  1. int(0)^(pi//4) (sec^(2)x)/((1+tan x)(2+tan x))dx is equal to

    Text Solution

    |

  2. int (-pi/2)^(pi/2)log((2-sin x)/(2+sinx))dx is equal to

    Text Solution

    |

  3. int (0)^(pi //2)((root(n)(secx))/(root(n)(secx)+root(n)("cosec"x)))dx=

    Text Solution

    |

  4. The value of int 0 ^ 1 x ^ 2 ( 1 - x ^ 2 ) ^ (3//2 ) dx ...

    Text Solution

    |

  5. The value of int0^oox/((1+x)(x^2+1))dx is

    Text Solution

    |

  6. Evaluate int(0)^(pi)(x dx)/(1+cos alpha sin x),where 0lt alpha lt pi.

    Text Solution

    |

  7. int(pi//2)^(pi//2)(cosx)/(1+e^(x))dx is equal to

    Text Solution

    |

  8. int(0)^(pi//2)(1)/((1+tanx))dx=?

    Text Solution

    |

  9. If int(0)^(1) tan^(-1) x dx = p , then the value of int(0)^(1) tan^(-1...

    Text Solution

    |

  10. The value of int (0)^(pi//2) log ("cosec "x) dx is

    Text Solution

    |

  11. Which of the following is true ?

    Text Solution

    |

  12. int(0)^(5) 1/((x-1)(x-2))dx is equal to

    Text Solution

    |

  13. int(pi/4)^(pi/2) e^x(logsinx+cotx)dx

    Text Solution

    |

  14. The value of int(0)^(pi) x sin^(3) x dx is

    Text Solution

    |

  15. The value of int0 ^(pi/2) (cos3x+1)/(cosx - 1) dx is equal to

    Text Solution

    |

  16. The value of underset(0)overset(1)int tan^(-1) ((2x-1)/(1+x-x^(2)))dx ...

    Text Solution

    |

  17. If f is a continous function, then

    Text Solution

    |

  18. The value of int(-pi)^(pi) sin^(3) x cos^(2) x dx is equal to

    Text Solution

    |

  19. The value of int(-1)^(1) log ((x-1)/(x+1))dx is

    Text Solution

    |

  20. int(pi//6)^(pi//3)(1)/((1+sqrt(tanx)))dx=(pi)/(12)

    Text Solution

    |

  21. int (1)^(2)e^(x) (1/x - 1/(x^(2)))dx is qual to

    Text Solution

    |