Home
Class 12
MATHS
Evaluate int(0)^(pi)(x dx)/(1+cos alpha ...

Evaluate `int_(0)^(pi)(x dx)/(1+cos alpha sin x)`,where `0lt alpha lt pi`.

A

`(pialpha)/(sin alpha)`

B

`(pialpha)/(cosalpha)`

C

`(pialpha)/(1+sinalpha)`

D

`(pialpha)/(1+cosalpha)`

Text Solution

Verified by Experts

The correct Answer is:
A

Let `l = int_(0)^(pi)(x dx)/(1+cos alpha.sin x)` …(i)
`rArr l = int_(0)^(pi)((pi-x))/(1+cos alpha.sin(pi-x))dx` …(ii)
On adding Eqs. (i) and (ii), we get
`2l = pi int_(0)^(pi)(dx)/(1+cos alpha.sin x)=pi int_(0)^(pi)(dx)/(1+cos alpha((2tan x//2)/(1+tan^(2)x//2)))`
`= pi int_(0)^(pi)(sec^(2)x//2 dx)/((1+tan^(2)x//2)+cos alpha (2 tan x//2))`
Put `tan.(x)/(2)=t rArr ((1)/(2))sec^(2) x//2.dx`
`therefore " " 2l = pi int_(0)^(oo)(2dt)/(1+t^(2)+2tcos alpha)`
`l = pi int_(0)^(oo) (dt)/(1+t^(2)+2t cos alpha)`
`= pi int_(0)^(oo) (dt)/((t+cos alpha)^(2)+sin^(2)alpha)`
`= (pi)/(sin alpha)[tan^(-1)((t+cos alpha)/(sin alpha))]_(0)^(oo)`
`rArr l=(pi alpha)/(sin alpha)`
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise PRACTICE EXERCISE (Exercise 2) (MISCELLANEOUS PROBLEMS)|76 Videos
  • CONTINUITY

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|16 Videos
  • DIFFERENTIAL EQUATION

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|27 Videos

Similar Questions

Explore conceptually related problems

Evaluate :int_(0)^( pi)(x)/(1+sin alpha sin x)dx

The value of the integral int_(0)^(pi) (xdx)/(1+cos alpha sinx), 0 lt alpha lt pi , is

int_(0)^( Evaluate: )(xdx)/(1+cos alpha sin x), where0

I= int_(0)^( pi)(x)/(1+sin x cos alpha)dx

int_(0)^( pi)(xdx)/(1+cos alpha*sin alpha)(0

The value of the integral int_(0)^(1)(dx)/(x^(2)+2xcosalpha+1) , where 0 lt alpha lt (pi)/(2) , is equal to :

The value of the integral int_(0)^(1)(dx)/(x^(2)+2x cos alpha +1),0ltalpha lt pi is

Evaluate :int_(0)^((pi)/(2))(sin x+cos x)dx

Evaluate: int_(0)^((pi)/(2))|sin x-cos x|dx

int_ (0) ^ (pi) (xdx) / (1 + cos alpha * sin x) = (pi alpha) / (sin alpha), 0