Home
Class 12
MATHS
If int(0)^(1) tan^(-1) x dx = p , then t...

If `int_(0)^(1) tan^(-1) x` dx = p , then the value of `int_(0)^(1) tan^(-1)((1-x)/(1 +x))` dx is

A

`pi/4+p`

B

`pi/4-p`

C

`1+p`

D

`1-p`

Text Solution

Verified by Experts

The correct Answer is:
B

`int_(0)^(1)tan^(-1)((1-x)/(1+x))dx = int_(0)^(1)[tan^(-1)(1)-tan^(-1)(x)]dx`
`= int_(0)^(1)(pi)/(4)dx = int_(0)^(1) tan^(-1)(x)dx = (pi)/(4)-p`
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise PRACTICE EXERCISE (Exercise 2) (MISCELLANEOUS PROBLEMS)|76 Videos
  • CONTINUITY

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|16 Videos
  • DIFFERENTIAL EQUATION

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|27 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(1)x tan^(-1)x dx=

int_(0)^(1)tan^(-1)dx

int_(0)^(1) x tan^(-1) x " "dx =

int _(0) ^(1) x tan ^(-1) x dx =

int_(0)^(1)x cos(tan^(-1)x)dx

int_(0)^(1)(tan^(-1)x)/(x)dx=

int_(0)^(1)(tan^(-1)x)/(x)dx=

int_(0)^(1)tan (2x-1)dx=

int_(0)^(1)Tan^(-1)((2x)/(1-x^(2)))dx=